Skip to main content

Advertisement

Log in

Insertion trauma of a cochlear implant electrode array with Nitinol inlay

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

The integration of a shape memory actuator is a potential mechanism to achieve a consistent perimodiolar position after electrode insertion during cochlear implant surgery. After warming up, and therefore activation of the shape memory effect, the electrode array will change from a straight configuration into a spiral shaped one leading to a final position close to the modiolus. The aim of this study was to investigate whether the integration of an additional thin wire (referred to as an “inlay”) made of Nitinol, a well-established shape memory alloy, in a conventional hearing preservation electrode array will affect the insertion behaviour in terms of increased risk of insertion trauma. Six conventional Hybrid-L electrode arrays (Cochlear Ltd., Sydney, Australia) were modified to incorporate a wire inlay made of Nitinol. The diameter of the wires was 100 µm with a tapered tip region. Electrodes were inserted into human temporal bone specimens using a standard surgical approach. After insertion and embedding in epoxy resin, histological sections were prepared to evaluate insertion trauma. Insertion was straightforward and no difficulties were observed. The addition of a shape memory wire, thin but also strong enough to curl the electrode array, does not result in histologically detectable insertion trauma. Atraumatic insertion seems possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. ASTM 2082 (2006) ASTM Standard F 2082-06: standard test method for determination of transformation temperature of nickel–titanium shape memory alloys by bend and free recovery

  2. Avci E, Nauwelaers T, Lenarz T, Hamacher V, Kral A (2014) Variations in microanatomy of the human cochlea. J Comp Neurol 522:3245–3261. doi:10.1002/cne.23594

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barras CDJ, Myers K (2010) Nitinol—its use in vascular surgery and other applications. EJVES Extra 19:564–569. doi:10.1053/ejvs.2000.1111

    Google Scholar 

  4. Briggs RJS, Tykocinski M, Xu J, Risi F, Svehla M, Cowan R, Stöver T, Erfurt P, Lenarz T (2006) Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode. Audiol Neurotol 11:42–48. doi:10.1159/000095613

    Article  Google Scholar 

  5. Burghard A, Lenarz T, Kral A, Paasche G (2014) Insertion site and sealing technique affect residual hearing and tissue formation after cochlear implantation. Hear Res 312:21–27. doi:10.1016/j.heares.2014.02.002

    Article  PubMed  Google Scholar 

  6. Buytaert J, Goyens J, De Greef D, Aerts P, Dirckx J (2014) Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy (LSFM). Microsc Microanal 20:1208–1217. doi:10.1017/S1431927614001329

    Article  CAS  PubMed  Google Scholar 

  7. Chen B, Kha H, Clark G (2007) Development of a steerable cochlear implant electrode array. In: 3rd Kuala Lumpur international conference on biomedical engineering, vol 15, pp 607–610

  8. Corbett SS, Swanson JW, Martyniuk J, Clary TR, Spelman FA, Clopton B, Voie AH, Jolly CN (1997) Multi-electrode cochlear implant and method of manufacturing the same. US 5,630,839

  9. Driscoll CLW, Carlson ML, Fama AF, Lane JI (2011) Evaluation of the hybrid-L24(R) electrode using microcomputed tomography. Laryngoscope 121:1508–1516. doi:10.1002/lary.21837

    Article  PubMed  Google Scholar 

  10. Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 275:149–160

    Article  Google Scholar 

  11. Eshraghi A, Yang N, Balkany T (2003) Comparative study of cochlear damage with three perimodiolar electrode designs. Laryngoscope 113:415–419

    Article  PubMed  Google Scholar 

  12. Friedmann DR, Peng R, Fang Y, Mcmenomey SO, Roland JT, Waltzman SB (2015) Effects of loss of residual hearing on speech performance with the CI422 and the hybrid-L electrode. Cochlear Implants Int 16:277–284

    Article  PubMed  Google Scholar 

  13. Gantz BJ, Turner C, Gfeller KE, Lowder MW (2005) Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Laryngoscope 115:796–802. doi:10.1097/01.MLG.0000157695.07536.D2

    Article  PubMed  Google Scholar 

  14. Gibson P, Darley I, Treaba C, Parker J, Dadd F (2011) Insertion tool for a cochlear implant electrode array. US 7,894,916 B2

  15. Hochmair I, Nopp P, Jolly C, Schmidt M, Schösser H, Garnham C, Anderson I (2006) MED-EL cochlear implants: state of the art and a glimpse into the future. Trends Amplif 10:201–219. doi:10.1177/1084713806296720

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hughes ML, Abbas PJ (2006) Electrophysiologic channel interaction, electrode pitch ranking, and behavioral threshold in straight versus perimodiolar cochlear implant electrode arrays. J Acoust Soc Am 119:1538–1547. doi:10.1121/1.2164969

    Article  PubMed  Google Scholar 

  17. Incerti PV, Ching TYC, Cowan R (2013) A systematic review of electric-acoustic stimulation: device fitting ranges, outcomes, and clinical fitting practices. Trends Amplif 17:3–26. doi:10.1177/1084713813480857

    Article  PubMed  PubMed Central  Google Scholar 

  18. Irving S, Gillespie L, Richardson R, Rowe D, Fallon JB, Wise AK (2014) Electroacoustic stimulation: now and into the future. Biomed Res Int 2014, ID 350504

  19. Jurawitz M, Büchner A, Harpel T, Schüssler M, Majdani O, Lesinski-Schiedat A, Lenarz T (2014) Hearing preservation outcomes with different cochlear implant electrodes: Nucleus® Hybrid™-L24 and Nucleus Freedom™ CI422. Audiol Neurotol 19:293–309. doi:10.1159/000360601

    Article  CAS  Google Scholar 

  20. Kiefer J, Pok M, Adunka O, Stürzebecher E, Baumgartner W, Schmidt M, Tillein J, Ye Q, Gstoettner W (2005) Combined electric and acoustic stimulation of the auditory system: results of a clinical study. Audiol Neurotol 10:134–144. doi:10.1159/000084023

    Article  Google Scholar 

  21. Kuzma JA (2000) Cochlear electrode array with positioning stylet. US 6,119,044

  22. Lenarz T, James C, Cuda D, Fitzgerald O’Connor A, Frachet B, Frijns JHM, Klenzner T, Laszig R, Manrique M, Marx M, Merkus P, Mylanus EM, Offeciers E, Pesch J, Ramos-Macias A, Robier A, Sterkers O, Uziel A (2013) European multi-centre study of the Nucleus Hybrid L24 cochlear implant. Int J Audiol 52:838–848. doi:10.3109/14992027.2013.802032

    Article  PubMed  Google Scholar 

  23. Lenarz T, Stöver T, Buechner A, Lesinski-Schiedat A, Patrick J, Pesch J (2009) Hearing conservation surgery using the hybrid-L electrode: results from the first clinical trial at the Medical University of Hannover. Audiol Neurotol 14:22–31. doi:10.1159/000206492

    Article  Google Scholar 

  24. Lenarz T, Stöver T, Buechner A, Paasche G, Briggs R, Risi F, Pesch J, Battmer RD (2006) Temporal bone results and hearing preservation with a new straight electrode. Audiol Neurotol 11:34–41. doi:10.1159/000095612

    Article  Google Scholar 

  25. Majdani O, Lenarz T, Harbach L, Pawsey N, Waldmann B, Rau TS (2014a) Insertion under water: cooling the temporal bone for insertion of a new experimental shape memory cochlear implant electrode. In: Proceedings of 14th symposium on cochlear implants and children, December 11–13, Vanderbilt University Medical Center, Nashville

  26. Majdani O, Lenarz T, Pawsey N, Risi F, Prielozny L, Rau TS (2014) Insertion of a cochlear implant electrode with shape memory properties into the inner ear for nerve-close position. Biomed Eng Biomed Tech 59:1077–1079. doi:10.1515/bmt-2014-5014

    Google Scholar 

  27. Majdani O, Lenarz T, Pawsey N, Risi F, Sedlmayr G, Rau TS (2013) First results with a prototype of a new cochlear implant electrode featuring shape memory effect. Biomed Tech 58:1–2. doi:10.1515/bmt-2013-4002

    Google Scholar 

  28. Min KS, Jun SB, Lim YS, Park S-I, Kim SJ (2013) Modiolus-hugging intracochlear electrode array with shape memory alloy. Comput Math Methods Med 2013:250915. doi:10.1155/2013/250915

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pelton AR, Dicellol J, Miyazaki S (2000) Optimisation of processing and properties of medical grade Nitinol wire. Minim Invas Ther Allied Technol 9:107–118

    Article  Google Scholar 

  30. Pelton AR, Russell SM, DiCello J (2003) The physical metallurgy of nitinol for medical applications. JOM 55:33–37. doi:10.1007/s11837-003-0243-3

    Article  Google Scholar 

  31. Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metall 2011:1–15. doi:10.1155/2011/501483

    Article  Google Scholar 

  32. Rau TS, Würfel W, Lenarz T, Majdani O (2013) Three-dimensional histological specimen preparation for accurate imaging and spatial reconstruction of the middle and inner ear. Int J Comput Assist Radiol Surg 8:481–509. doi:10.1007/s11548-013-0825-7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roland JT, Gantz BJ, Waltzman SB, Parkinson AJ (2016) United States multicenter clinical trial of the cochlear nucleus hybrid implant system. Laryngoscope 126:175–181. doi:10.1002/lary.25451

    Article  PubMed  Google Scholar 

  34. Roland JT, Zeitler DM, Jethanamest D, Huang TC (2008) Evaluation of the short hybrid electrode in human temporal bones. Otol Neurotol 29:482–488. doi:10.1097/MAO.0b013e31816845eb

    Article  PubMed  Google Scholar 

  35. Roland PS, Wright CG (2006) Surgical aspects of cochlear implantation: mechanisms of insertional trauma. Adv Otorhinolaryngol 64:11–30. doi:10.1159/000094642

    PubMed  Google Scholar 

  36. Seidman MD, Vivek P, Dickinson W (2005) Neural response telemetry results with the nucleus 24 contour in a perimodiolar position. Otol Neurotol 26:620–623. doi:10.1097/01.mao.0000178122.35988.df

    Article  PubMed  Google Scholar 

  37. Shepherd R, Verhoeven K, Xu J, Risi F, Fallon J, Wise A (2011) An improved cochlear implant electrode array for use in experimental studies. Hear Res 277:20–27. doi:10.1016/j.heares.2011.03.017

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shepherd RK, Hatsushika S, Clark GM (1993) Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation. Hear Res 66:108–120. doi:10.1016/0378-5955(93)90265-3

    Article  CAS  PubMed  Google Scholar 

  39. Skarzynski H, Lorens A, Matusiak M, Porowski M, Skarzynski PH, James CJ (2012) Partial deafness treatment with the nucleus straight research array cochlear implant. Audiol Neurootol 17:82–91. doi:10.1159/000329366

    Article  PubMed  Google Scholar 

  40. Skarzynski H, Podskarbi-Fayette R (2010) A new cochlear implant electrode design for preservation of residual hearing: a temporal bone study. Acta Otolaryngol 130:435–442. doi:10.3109/00016480903283733

    Article  PubMed  Google Scholar 

  41. Spelman FA, Clopton BM, Voie A, Jolly CN, Huynh K, Boogaard J, Swanson JW (1998) Cochlear implant with shape memory material and method for implanting the same. US 5,800,500

  42. Stöver T, Issing P, Graurock G, Erfurt P, ElBeltagy Y, Paasche G, Lenarz T (2005) Evaluation of the advance off-stylet insertion technique and the cochlear insertion tool in temporal bones. Otol Neurotol 26:1161–1170. doi:10.1097/01.mao.0000179527.17285.85

    Article  PubMed  Google Scholar 

  43. Szyfter W, Wróbel M, Karlik M, Borucki Ł, Stieler M, Gibasiewicz R, Gawȩcki W, Sekula A (2013) Observations on hearing preservation in patients with hybrid-L electrode implanted at Poznan University of Medical Sciences in Poland. Eur Arch Oto Rhino Laryngol 270:2637–2640. doi:10.1007/s00405-012-2263-5

    Article  Google Scholar 

  44. Todt I, Basta D, Seidl R, Ernst A (2008) Electrophysiological effects of electrode pull-back in cochlear implant surgery. Acta Otolaryngol 128:1314–1321. doi:10.1080/00016480801935533

    Article  PubMed  Google Scholar 

  45. van Weert S, Stokroos RJ, Rikers MMJG, van Dijk P (2005) Effect of peri-modiolar cochlear implant positioning on auditory nerve responses: a neural response telemetry study. Acta Otolaryngol 125:725–731. doi:10.1080/00016480510028492

    Article  PubMed  Google Scholar 

  46. Von Ilberg CA, Baumann U, Kiefer J, Tillein J, Adunka OF (2011) Electric-acoustic stimulation of the auditory system: a review of the first decade. Audiol Neurotol 16:1–30. doi:10.1159/000327765

    Article  Google Scholar 

  47. Wanna GB, Noble JH, Carlson ML, Gifford RH, Dietrich MS, Haynes DS, Dawant BM, Labadie RF (2014) Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope 124:S1–S7. doi:10.1002/lary.24728

    Article  PubMed  PubMed Central  Google Scholar 

  48. Woodson EA, Reiss LAJ, Turner CW, Gfeller K, Gantz BJ (2010) The hybrid cochlear implant: a review. Adv Otorhinolaryngol 67:125–134. doi:10.1159/000262604

    PubMed  Google Scholar 

  49. Würfel W, Lanfermann H, Lenarz T, Majdani O (2014) Cochlear length determination using cone beam computed tomography in a clinical setting. Hear Res 316:65–72. doi:10.1016/j.heares.2014.07.013

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the helpful discussions and support during manufacturing of the Nitinol inlays by Mr. Th. Kappler and Mr. G. Sedlmayr, both G.RAU GmbH & Co. KG (Pforzheim, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Rau.

Ethics declarations

Funding

Work in this project was supported in part by Cochlear Ltd., which provided the electrodes, financial support for the temporal bone study and paid L.H.

Conflict of interest

NP and L.H. are with Cochlear Ltd. T.L. is a consultant for Cochlear Ltd. Both T.L. and O.M. have received support by Cochlear Ltd. in terms of travelling costs in the past. The authors declare that there are no other conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rau, T.S., Harbach, L., Pawsey, N. et al. Insertion trauma of a cochlear implant electrode array with Nitinol inlay. Eur Arch Otorhinolaryngol 273, 3573–3585 (2016). https://doi.org/10.1007/s00405-016-3955-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-016-3955-z

Keywords

Navigation