Skip to main content
Log in

Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

All living cells possess electrical characteristics and are thus responsive to, and even generate electric fields and currents. It has been shown that the electrical properties of cancer cells differ from normal proliferating cells, thus electric fields may induce differential effects in normal and cancer cells. Manipulation of these electrical properties may provide a powerful direct and/or adjuvant therapeutic option for cancer. A whole cell impedance-based biosensor to monitor the effects of a range of different frequencies (50 kHz–2 MHz) at low-intensity (<2 V/cm) on the growth rate of human SKOV3 ovarian cancer cells versus non-cancerous HUVECs is reported. Rapid real-time monitoring of the SKOV3 behavior was observed as the alternating electric fields were applied and the impedimetric response of the cells was recorded. The cells were also labeled with propidium iodide to examine morphological changes and cell viability with fluorescence microscopy with trypan blue for comparison. A noticeable decrease in the growth profile of the SKOV3 was observed with the application of 200 kHz alternating electric fields indicating specific inhibitory effects on dividing cells in culture in contrast to the HUVECs. The outcome of this research will improve our fundamental understanding of the behavior of cancer cells when exposed to alternating electric fields at specific frequencies and foster the development strategies and optimal parameters for alternating electric field therapies for clinical and drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A.T. Barker, R.A. Dixon, W.J.W. Sharrard, M.L. Sutcliffe, Lancet 323, 994–996 (1984)

    Article  Google Scholar 

  • D.J. Blackiston, K.A. McLaughlin, M. Levin, Cell Cycle 8, 3527–3536 (2009)

    Article  Google Scholar 

  • N.A. Charoo, Z. Rahman, M.A. Repka, S.N. Murthy, Curr. Drug Deliv. 7, 125–136 (2010)

    Article  Google Scholar 

  • E. Elson, in The biomedical engineering handbook, ed. by J.D. Bronzino (CRC Press, Inc, Boca Raton, 1995), pp. 1417–1423

    Google Scholar 

  • F. Fantozzi, E. Arturoni, R. Barbucci, Bioelectrochemistry 78, 191–195 (2010)

    Article  Google Scholar 

  • M. Golzio, J. Teissié, M.P. Rols, PNAS 99, 1292–1297 (2002)

    Article  Google Scholar 

  • S. Hirohashi, Am. J. Pathol. 153, 333–339 (1998)

    Article  Google Scholar 

  • E. Hondroulis, C. Liu, C.Z. Li, Nanotechnology 21, 315103 (2010)

    Article  Google Scholar 

  • E. Hondroulis, Z. Zhang, C. Chen, C.-Z. Li, Anal. Lett. 45, 272–282 (2012)

    Article  Google Scholar 

  • M. Ieran, M. Bagnacani, M. Annovi, A. Moratti, R. Cadessi, J. Orthop. Res. 8, 276–282 (1990)

    Article  Google Scholar 

  • E.D. Kirson, V. Dbaly, F. Tovarys, J. Vymazal, J.F. Soustiel, A. Itzhaki, D. Mordechovich, S. Steinberg-Shapira, Z. Gurvich, R. Schneiderman, Y. Wasserman, M. Salzberg, B. Ryffel, D. Goldsher, E. Dekel, Y. Palti, PNAS 104, 10152–10157 (2007)

    Article  Google Scholar 

  • X. Lin, D. Dean, Am. J. Respir. Crit. Care Med. 183, A2099 (2011)

    Google Scholar 

  • F.E. Lock, N. Underhill-Day, T. Dunwell, D. Matallanas, W. Cooper, L. Hesson, A. Recino, A. Ward, T. Pavlova, E. Zabarovsky, M.M. Grant, E.R. Maher, A.D. Chalmers, W. Kolch, F. Latif, Oncogene 29, 4307–4316 (2010)

    Article  Google Scholar 

  • J.H.T. Luong, K.B. Male, J.D. Glennon, Biotechnol. Adv. 26, 492–500 (2008)

    Article  Google Scholar 

  • L.M. Mir, Bioelectrochemistry 53, 1–10 (2001)

    Article  Google Scholar 

  • R. Sandyk, J. Altern. Complement. Med. 3, 365–386 (1997)

    Article  Google Scholar 

  • M. Sok, M. Sentjurc, M. Schara, J. Stare, T. Rott, Ann. Thorac. Surg. 73, 1567–1571 (2002)

    Article  Google Scholar 

  • L. Song, L. Chau, Y. Sakamoto, J. Nakashima, M. Koide, R. Tuan, Mol. Ther. 9, 607–616 (2004)

    Article  Google Scholar 

  • B. Szachowicz-Petelska, I. Dobrzynska, S. Sulkowski, Z.A. Figaszewski, J. Environ. Biol. 31, 845–850 (2010)

    Google Scholar 

  • J. Teissié, J. Escoffre, M. Rols, M. Golzio, Radiol. Oncol. 42, 196–206 (2008)

    Article  Google Scholar 

  • T.Y. Tsong, Annu. Rev. Biophys. Biophys. Chem. 19, 83–106 (1990)

    Article  Google Scholar 

  • X. Zhao, M. Zhang, R. Yang, Commun. Nonlinear Sci. Numer. Simul. 15, 1400–1407 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research and development project was supported by the grant NIH R15 ES021079-01, Young Inventor Award by W. H. Coulter Foundation to Cz Li, and the Research Foundation for Doctoral Programs in Universities under the State Ministry of Education of China (No. 20100191110032) to Zz Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Zhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hondroulis, E., Melnick, S.J., Zhang, X. et al. Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device. Biomed Microdevices 15, 657–663 (2013). https://doi.org/10.1007/s10544-013-9788-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9788-2

Keywords

Navigation