Skip to main content

Advertisement

Log in

A comparison of polymer substrates for photolithographic processing of flexible bioelectronics

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Flexible bioelectronics encompass a new generation of sensing devices, in which controlled interactions with tissue enhance understanding of biological processes in vivo. However, the fabrication of such thin film electronics with photolithographic processes remains a challenge for many biocompatible polymers. Recently, two shape memory polymer (SMP) systems, based on acrylate and thiol-ene/acrylate networks, were designed as substrates for softening neural interfaces with glass transitions above body temperature (37 °C) such that the materials are stiff for insertion into soft tissue and soften through low moisture absorption in physiological conditions. These two substrates, acrylate and thiol-ene/acrylate SMPs, are compared to polyethylene naphthalate, polycarbonate, polyimide, and polydimethylsiloxane, which have been widely used in flexible electronics research and industry. These six substrates are compared via dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and swelling studies. The integrity of gold and chromium/gold thin films on SMP substrates are evaluated with optical profilometry and electrical measurements as a function of processing temperature above, below and through the glass transition temperature. The effects of crosslink density, adhesion and cure stress are shown to play a critical role in the stability of these thin film materials, and a guide for the future design of responsive polymeric materials suitable for neural interfaces is proposed. Finally, neural interfaces fabricated on thiol-ene/acrylate substrates demonstrate long-term fidelity through both in vitro impedance spectroscopy and the recording of driven local field potentials for 8 weeks in the auditory cortex of laboratory rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • A. Altuna, L. Menendez de la Prida, E. Bellistri, G. Gabriel, A. Guimerá, J. Berganzo, R. Villa, L.J. Fernández, SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens. Bioelectron. 37(1), 1–5 (2012)

    Article  Google Scholar 

  • M. Behl, A. Lendlein, Shape-memory polymers. Materials Today 10(4), 20–28 (2007)

    Article  Google Scholar 

  • M. Berggren, A. Richter–Dahlfors, Organic bioelectronics. Adv. Mater. 19(20), 3201–3213 (2007)

    Article  Google Scholar 

  • M. Cakmak, Y.D. Wang, M. Simhambhatla, Processing characteristics, structure development, and properties of uni and biaxially stretched poly(ethylene 2,6 naphthalate) (PEN) films. Polym. Eng. Sci. 30(12), 721–733 (1990)

    Article  Google Scholar 

  • K.C. Cheung, in Thin-Film Microelectrode Arrays for Biomedical Applications Implantable Neural Prostheses, 2, ed. by D. Zhou, E. Greenbaum (Springer, New York, 2010), pp. 157–190

    Google Scholar 

  • S.F. Cogan, Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275–309 (2008)

    Article  Google Scholar 

  • E. Delivopoulos, I.R. Minev, S.P. Lacour. Evaluation of negative photo-patternable PDMS for the encapsulation of neural electrodes. Neural Engineering (NER), 2011 5th International IEEE/EMBS Conference on, 2011, pp. 490–494.

  • A.P. Dorey, J. Knight, The variation of resistance of gold films with time and annealing procedure. Thin Solid Films 4(6), 445–451 (1969)

    Article  Google Scholar 

  • K. Gall, C.M. Yakacki, Y. Liu, R. Shandas, N. Willett, K.S. Anseth, Thermomechanics of the shape memory effect in polymers for biomedical applications. J. Biomed. Mater. Res. A 73A(3), 339–348 (2005)

    Article  Google Scholar 

  • H. Gleskova, I. Cheng, S. Wagner, Z. Suo. Thermomechanical criteria for overlay alignment in flexible thin-film electronic circuits. Appl. Phys Lett. 88(1), 011905-011905-011903 (2006).

    Google Scholar 

  • O. Graudejus, P. Görrn, S. Wagner, Controlling the morphology of gold films on poly(dimethylsiloxane). ACS Appl. Mater. Interfaces 2(7), 1927–1933 (2010)

    Article  Google Scholar 

  • A.R. Grayson, R.S. Shawgo, A.M. Johnson, N.T. Flynn, Y. Li, M.J. Cima, R. Langer, A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 92(1), 6–21 (2004)

    Article  Google Scholar 

  • W.M. Grill, S.E. Norman, R.V. Bellamkonda, Implanted neural interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 11, 1–24 (2009)

    Article  Google Scholar 

  • J.L. Halary, F. Lauprêtre, L. Monnerie. Polymer materials: Macroscopic properties and molecular interpretations (Wiley, Hoboken, NJ, 2011)

  • J.P. Harris, J.R. Capadona, R.H. Miller, B.C. Healy, K. Shanmuganathan, S.J. Rowan, C. Weder, D.J. Tyler, Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies. J. Neural Eng. 8(6), 066011 (2011a)

    Article  Google Scholar 

  • J.P. Harris, A.E. Hess, S.J. Rowan, C. Weder, C.A. Zorman, D.J. Tyler, J.R. Capadona, In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes. J. Neural Eng. 8(4), 046010 (2011b)

    Article  Google Scholar 

  • N.G. Hatsopoulos, J.P. Donoghue, The science of neural interface systems. Annu. Rev. Neurosci. 32, 249 (2009)

    Article  Google Scholar 

  • C.E. Hoyle, A.B. Lowe, C.N. Bowman, Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39(4), 1355–1387 (2010)

    Article  Google Scholar 

  • S. Isoda, M. Kochi, H. Kambe, Molecular aggregation of solid aromatic polymers. II. Mechanical properties of aromatic polyimide film. J. Polym. Sci. Polym. Phys. Ed. 20(5), 837–844 (1982)

    Article  Google Scholar 

  • P. Jin, N. Liu, J. Lin, J. Tan, P.D. Prewett, Replication of micro-optical elements with continuous relief by ultraviolet embossing with thiol-ene-based resist. Appl. Opt. 50(21), 4063–4067 (2011)

    Article  Google Scholar 

  • D.R. Kipke, W. Shain, G. Buzsáki, E. Fetz, J.M. Henderson, J.F. Hetke, G. Schalk, Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28(46), 11830 (2008)

    Article  Google Scholar 

  • T.Y. Lee, J. Carioscia, Z. Smith, C.N. Bowman, Thiol−Allyl Ether−Methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties. Macromolecules 40(5), 1473–1479 (2007)

    Article  Google Scholar 

  • A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034 (2002)

    Article  Google Scholar 

  • A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673–1676 (2002)

    Article  Google Scholar 

  • C. Li, J. Han, C.H. Ahn, Flexible biosensors on spirally rolled micro tube for cardiovascular in vivo monitoring. Biosens. Bioelectron. 22(9–10), 1988–1993 (2007)

    Article  Google Scholar 

  • T. Liang, Y. Makita, S. Kimura, Effect of film thickness on the electrical properties of polyimide thin films. Polymer 42(11), 4867–4872 (2001)

    Article  Google Scholar 

  • H. Lu, J.A. Carioscia, J.W. Stansbury, C.N. Bowman, Investigations of step-growth thiol-ene polymerizations for novel dental restoratives. Dent. Mater. 21(12), 1129–1136 (2005)

    Article  Google Scholar 

  • W.A. MacDonald, M.K. Looney, D. MacKerron, R. Eveson, R. Adam, K. Hashimoto, K. Rakos, Latest advances in substrates for flexible electronics. J. Soc. Inf. Disp. 15(12), 1075–1083 (2007)

    Article  Google Scholar 

  • I. Maesoon, C. Il-Joo, W. Fan, K.D. Wise, Y. Euisik. Neural probes integrated with optical mixer/splitter waveguides and multiple stimulation sites. Micro Electro Mechanical Systems (MEMS), 2011 I.E. 24th International Conference on, pp. 1051–1054 (2011).

  • A. Mata, A. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 7(4), 281–293 (2005)

    Article  Google Scholar 

  • M.A. Meitl, Z.-T. Zhu, V. Kumar, K.J. Lee, X. Feng, Y.Y. Huang, I. Adesida, R.G. Nuzzo, J.A. Rogers, Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5(1), 33–38 (2006)

    Article  Google Scholar 

  • J.P. Mercier, J.J. Aklonis, M. Litt, A.V. Tobolsky, Viscoelastic behavior of the polycarbonate of bisphenol A. J. Appl. Polym. Sci. 9(2), 447–459 (1965)

    Article  Google Scholar 

  • H. Metz, J. McElhaney, A.K. Ommaya, A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech. 3(4), 453–458 (1970)

    Article  Google Scholar 

  • R.G. Nuzzo, F.A. Fusco, D.L. Allara, Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. J. Am. Chem. Soc. 109(8), 2358–2368 (1987)

    Article  Google Scholar 

  • G. Pearson, W. Read Jr., W.L. Feldmann, Deformation and fracture of small silicon crystals. Acta Metall. 5(4), 181–191 (1957)

    Article  Google Scholar 

  • M.T. Pottiger, J.C. Coburn, J.R. Edman, The effect of orientation on thermal expansion behavior in polyimide films. J. Polymer Sci., Part B: Polymer Phys. 32(5), 825–837 (1994)

    Article  Google Scholar 

  • D.T. Reilly, A.H. Burstein, V.H. Frankel, The elastic modulus for bone. J. Biomech. 7(3), 271–275 (1974)

    Article  Google Scholar 

  • R.L. Rennaker, S. Street, A.M. Ruyle, A.M. Sloan, A comparison of chronic multi-channel cortical implantation techniques: manual versus mechanical insertion. J. Neurosci. Methods 142(2), 169–176 (2005)

    Article  Google Scholar 

  • D.C. Rodger, A.J. Fong, W. Li, H. Ameri, A.K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P.R. Menon, E. Meng, J.W. Burdick, R.R. Roy, V.R. Edgerton, J.D. Weiland, M.S. Humayun, Y.-C. Tai, Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors Actuators B Chem. 132(2), 449–460 (2008)

    Article  Google Scholar 

  • J.A. Rogers, R.G. Nuzzo, Recent progress in soft lithography. Mater. Today 8(2), 50–56 (2005)

    Article  Google Scholar 

  • D.L. Safranski, K. Gall, Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks. Polymer 49(20), 4446–4455 (2008)

    Article  Google Scholar 

  • T. Saxena, L. Karumbaiah, E.A. Gaupp, R. Patkar, K. Patil, M. Betancur, G.B. Stanley, R.V. Bellamkonda, The impact of chronic blood–brain barrier breach on intracortical electrode function. Biomaterials 34(20), 4703–4713 (2013)

    Article  Google Scholar 

  • A.F. Senyurt, H. Wei, C.E. Hoyle, S.G. Piland, T.E. Gould, Ternary Thiol−Ene/Acrylate photopolymers: effect of acrylate structure on mechanical properties. Macromolecules 40(14), 4901–4909 (2007)

    Article  Google Scholar 

  • T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966 (2004)

    Article  Google Scholar 

  • T. Stieglitz, M. Schuettler, B. Rubehn, T. Boretius, J. Badia, X. Navarro. Evaluation of polyimide as substrate material for electrodes to interface the peripheral nervous system. Neural Engineering (NER), 2011 5th International IEEE/EMBS Conference on, pp. 529–533 (2011).

  • J. Subbaroyan, D.C. Martin, D.R. Kipke, A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural Eng. 2, 103 (2005)

    Article  Google Scholar 

  • A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533 (1996)

    Article  Google Scholar 

  • G. Urban, G. Jobst, F. Keplinger, E. Aschauer, O. Tilado, R. Fasching, F. Kohl, Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications. Biosens. Bioelectron. 7(10), 733–739 (1992)

    Article  Google Scholar 

  • J. Viventi, D.-H. Kim, L. Vigeland, E.S. Frechette, J.A. Blanco, Y.-S. Kim, A.E. Avrin, V.R. Tiruvadi, S.-W. Hwang, A.C. Vanleer, D.F. Wulsin, K. Davis, C.E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J.A. Rogers, B. Litt, Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–1605 (2011)

    Article  Google Scholar 

  • T. Ware, D. Simon, D.E. Arreaga-Salas, J. Reeder, R. Rennaker, E.W. Keefer, W. Voit, Fabrication of responsive, softening neural interfaces. Adv. Funct. Mater. 22(16), 3470–3479 (2012a)

    Article  Google Scholar 

  • T. Ware, D. Simon, K. Hearon, C. Liu, S. Shah, J. Reeder, N. Khodaparast, M.P. Kilgard, D.J. Maitland, R.L. Rennaker II, W.E. Voit, Three-dimensional flexible electronics enabled by shape memory polymer substrates for responsive neural interfaces. Macromol. Mater. Eng. 297(12), 1193–1202 (2012b)

    Article  Google Scholar 

  • T. Ware, D. Simon, C. Liu, T. Musa, S. Vasudevan, A.M. Sloan, E.W. Keefer, R.L. Rennaker, W. Voit, Thiol-ene/Acrylate substrates for softening intracortical electrodes. J. Biomed. Mater. Res. B Appl. Biomater. (2013). doi:10.1002/jbmb.32946

    Google Scholar 

  • M.L. White, Encapsulation of integrated circuits. Proc. IEEE 57(9), 1610–1615 (1969)

    Article  Google Scholar 

  • D.F. Williams, On the mechanisms of biocompatibility. Biomaterials 29(20), 2941–2953 (2008)

    Article  Google Scholar 

  • I. Willner, B. Willner, Biomaterials integrated with electronic elements: en route to bioelectronics. Trends Biotechnol. 19(6), 222–230 (2001)

    Article  Google Scholar 

  • O. Yizhar, L.E. Fenno, T.J. Davidson, M. Mogri, K. Deisseroth, Optogenetics in neural systems. Neuron 71(1), 9–34 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the FDA for the use of the Bruker Contour GT-K1 3D Optical Microscope. The opinions and/or conclusions expressed are solely those of the authors and in no way imply a policy or position of the Food and Drug Administration. This material is based partially based upon work supported from several sources: the National Institutes of Neurological Disorders and Stroke 5R01DC008982; the National Science Foundation Partnerships for Innovation and Graduate Research Fellowship under Grant No. 1147385; FUSION support from the State of Texas.

Author declaration

“Syzygy Memory Plastics, Inc. funds undergraduate research in the Advanced Polymers Research Laboratory (APRL) at the University of Texas at Dallas. Taylor Ware and Walter Voit have a significant financial interest in Syzygy Memory Plastics, Inc. This financial interest has been disclosed to UT Dallas and a conflict of interest management plan is in place to manage the potential conflict of interest associated with this research program.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Voit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, D., Ware, T., Marcotte, R. et al. A comparison of polymer substrates for photolithographic processing of flexible bioelectronics. Biomed Microdevices 15, 925–939 (2013). https://doi.org/10.1007/s10544-013-9782-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9782-8

Keywords

Navigation