Skip to main content

Advertisement

Log in

On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We describe a novel fabrication method that creates microporous, polymeric membranes that are either flat or contain controllable 3-dimensional shapes that, when populated with Caco-2 cells, mimic key aspects of the intestinal epithelium such as intestinal villi and tight junctions. The developed membranes can be integrated with microfluidic, multi-organ cell culture systems, providing access to both sides, apical and basolateral, of the 3D epithelial cell culture. Partial exposure of photoresist (SU-8) spun on silicon substrates creates flat membranes with micrometer-sized pores (0.5–4.0 μm) that—supported by posts—span across 50 μm deep microfluidic chambers that are 8 mm wide and 10 long. To create three-dimensional shapes the membranes were air dried over silicon pillars with aspect ratios of up to 4:1. Space that provides access to the underside of the shaped membranes can be created by isotropically etching the sacrificial silicon pillars with xenon difluoride. Depending on the size of the supporting posts and the pore sizes the overall porosity of the membranes ranged from 4.4 % to 25.3 %. The microfabricated membranes can be used for integrating barrier tissues such as the gastrointestinal tract epithelium, the lung epithelium, or other barrier tissues with multi-organ “body-on-a-chip” devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • J.R. Anderson, D.T. Chiu, R.J. Jackman, O. Cherniavskaya, J.C. McDonald, H. Wu, S.H. Whitesides, G.M. Whitesides, Anal. Chem. 72, 3158 (2000)

    Article  Google Scholar 

  • P. Artursson, K. Palm, K. Luthman, Adv. Drug Deliv. Rev. 46, 27 (2001)

    Article  Google Scholar 

  • B. Bohl, R. Steger, R. Zengerle, P. Koltay, J. Micromech. Microeng. 15, 1125 (2005)

    Article  Google Scholar 

  • R.M. Brand, T.L. Hannah, C. Mueller, Y. Cetin, F.G. Hamel, Ann. Biomed. Eng. 28, 1210 (2000)

    Article  Google Scholar 

  • J. Carlier, S. Arscott, V. Thomy, J.C. Fourrier, F. Caron, J.C. Camart, C. Druon, P. Tabourier, J. Micromech. Microeng. 14, 619 (2004)

    Article  Google Scholar 

  • R.A. Conradi, K.F. Wilkinson, B.D. Rush, A.R. Hilgers, M.J. Ruwart, P.S. Burton, Pharm. Res. 10, 1790 (1993)

    Article  Google Scholar 

  • N. Ferrell, R.R. Desai, A.J. Fleischman, S. Roy, H.D. Humes, W.H. Fissell, Biotechnol. Bioeng. 107, 707 (2010)

    Article  Google Scholar 

  • M. Furuse, T. Hirase, M. Itoh, A. Nagafuchi, S. Yonemura, S. Tsukita, S. Tsukita, J. Cell Biol. 123, 1777 (1993)

    Article  Google Scholar 

  • G. Harris, M. Shuler, Biotech. Bioproc. Eng. 8, 246 (2003)

    Article  Google Scholar 

  • I. Hubatsch, E.G. Ragnarsson, P. Artursson, Nat. Protoc. 2, 2111 (2007)

    Article  Google Scholar 

  • D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber, Science 328, 1662 (2010)

    Article  Google Scholar 

  • Y. Imura, Y. Asano, K. Sato, E. Yoshimura, Anal. Sci. 25, 1403 (2009)

    Article  Google Scholar 

  • D.C. Kim, P.S. Burton, R.T. Borchardt, Pharm. Res. 10, 1710 (1993)

    Article  Google Scholar 

  • K. Kim, D.S. Park, H.M. Lu, W. Che, K. Kim, J. Lee, C.H. Ahn, J. Micromech. Microeng. 14, 597 (2004)

    Article  Google Scholar 

  • I. Kola, J. Landis, Nat. Rev. Drug Discov. 3, 711 (2004)

    Article  Google Scholar 

  • H. Lennernas, J. Pharm. Pharmacol. 49, 627 (1997)

    Article  Google Scholar 

  • B. Ma, G. Zhang, J. Qin, B. Lin. 9, 232 (2009)

    Google Scholar 

  • G.J. Mahler, M.B. Esch, R.P. Glahn, M.L. Shuler, Biotechnol. Bioeng. 104, 193 (2009a)

    Article  Google Scholar 

  • G.J. Mahler, M.L. Shuler, R.P. Glahn, J. Nutr. Biochem. 20, 494 (2009b)

    Article  Google Scholar 

  • C. Ramello, P. Paullier, A. Ould-Dris, M. Monge, C. Legallais, E. Leclerc, Toxicol. In Vitro 25, 1123 (2011)

    Article  Google Scholar 

  • W. Rubas, M.E. Cromwell, Z. Shahrokh, J. Villagran, T.N. Nguyen, M. Wellton, T.H. Nguyen, R.J. Mrsny, J. Pharm. Sci. 85, 165 (1996)

    Article  Google Scholar 

  • R.M. Schwartz, J.K. Furne, M.D. Levitt, Gastroenterology 109, 1206 (1995)

    Article  Google Scholar 

  • A. Sin, K.C. Chin, M.F. Jamil, Y. Kostov, G. Rao, M.L. Shuler 20, 338 (2004)

    Google Scholar 

  • J.H. Sung, J. Yu, D. Luo, M.L. Shuler, J.C. March, Lab Chip 11, 389 (2011)

    Article  Google Scholar 

  • D.A. Tatosian, M.L. Shuler 103, 187 (2009)

    Google Scholar 

  • G.J. Tortora, S.R. Grabowski, Principles of Anatomy and Physiology (HarperCollinsCollege, New York, 1993)

    Google Scholar 

  • F. Vozzi, J.M. Heinrich, A. Bader, A.D. Ahluwalia 15, 1291 (2009)

    Google Scholar 

  • L. Wang, S.K. Murthy, G.A. Barabino, R.L. Carrier, Biomaterials 31, 7586 (2010)

    Article  Google Scholar 

  • P. Wils, A. Warnery, V. Phung-Ba, D. Scherman, Cell Biol. Toxicol. 10, 393 (1994)

    Article  Google Scholar 

  • W.M. Zhang, J. Li, L.X. Cao, Y.G. Wang, W. Guo, K.X. Liu, J.M. Xue, Nucl. Instrum. Meth. B 266, 3166 (2008)

    Article  Google Scholar 

  • C. Zhang, Z. Zhao, N.A. Abdul Rahim, D. van Noort, H. Yu, Lab Chip 9, 3185 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the Nanobiotechnology Center (NBTC), an STC Program of the National Science Foundation, under Agreement No. ECS-9876771, by the Army Corps of Engineers under Agreement ID W9132T-07-2-0010 and by the NSF under grant No. CBET-1106153. This work was performed in part at the Cornell NanoScale Science & Technology Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765). This work was in part supported by the National Research Foundation of Korea (NRF, Grant no. 2012-0003408), KFRI (Korea Food Research Institute, grant no: E0121705), Hongik University new faculty research support fund, and 2012 Hongik University Research Fund. Caco-2 samples for SEM imaging were prepared at the Cornell Center for Materials Reserach (CCMR, NSF DMR-1120296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandy Brigitte Esch.

Additional information

Mandy Brigitte Esch and Jong Hwan Sung have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esch, M.B., Sung, J.H., Yang, J. et al. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices. Biomed Microdevices 14, 895–906 (2012). https://doi.org/10.1007/s10544-012-9669-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9669-0

Keywords

Navigation