Skip to main content

Advertisement

Log in

Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Bio-electrodes have traditionally been made of materials such as metal and silicon that are much stiffer than the tissue from which they record or stimulate. This difference in mechanical compliance can cause incomplete or ineffective contact with the tissue. The electrode stiffness has also been hypothesized to cause chronic low-grade injury and scar-tissue encapsulation, reducing stimulation and recording efficiency. As an initial step to resolve these issues with electrode performance, we have developed and characterized electrically-functional, low-Young’s modulus, microcable-shaped neuroelectrodes and demonstrated electrophysiological recording functionality. The microcable geometry gives the electrodes a similar footprint to traditional wire and microwire neuroelectrodes, while reducing the difference in Young’s modulus from nervous tissue by orders of magnitude. The electrodes are composed of PDMS and thin-film gold, affording them a high-level of compliance that is well suited for in vivo applications. The composite Young’s modulus of the electrode was experimentally determined to be 1.81 ± 0.01 MPa. By incorporating a high-tear-strength silicone, Sylgard 186, the load at failure was increased by 92%, relative to that of the commonly used Sylgard 184. The microcable electrodes were also electromechanically tested, with measurable conductivity (220 kΩ) at an average 8% strain (n = 2) after the application of 200% strain. Electrophysiological recording is demonstrated by wrapping the electrode around a peripheral nerve, utilizing the compliance and string-like profile of the electrode for effective recording in nerve tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • T. Adrega, Lacour, S.P., Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J. Micromech. Microeng. 20(5) (2010).

  • A.T. Al-Halhouji, I. Kampen, T. Krah, S. Buttgenbach, Nanoindentation testing of SU-8 photoresist mechanical propterties. Microelectron. Eng. 85(5–6), 942–944 (2008)

    Article  Google Scholar 

  • J.E. Anderson, V. Markovac, P.R. Troyk, Polymer encapsulants for microelectronics—mechanisms for protection and failure. IEEE Trans. Components. Hybrids. Manuf. Technol. 11(1), 152–158 (1988)

    Article  Google Scholar 

  • M.R. Begley, H. Bart-Smith, The electro-mechanical response of highly compliant substrates and thin stiff films with periodic cracks. Int. J. Solids Struct. 42(18–19), 5259–5273 (2005)

    Article  MATH  Google Scholar 

  • S. Bergbreiter, Elastomer-based micromechanical energy storage system, In IMECE (2006).

  • R. Biran, Martin, D.C., & Tresco, P.A., The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J. Biomed. Mater. Res. Part A, 169–178, (2007)

  • G.H. Borschel, K.F. Kia, W.M. Kuzon, R.G. Dennis, Mechanical properties of acellular peripheral nerve. J. Surg. Res. 114(2), 133–139 (2003)

    Article  Google Scholar 

  • N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681), 146–149 (1998)

    Article  Google Scholar 

  • V. Chiono, G. Vozzi, F. Vozzi, C. Salvadori, F. Dini, F. Carlucci, M. Arispici, S. Burchielli, F. Di Scipio, S. Geuna, M. Fornaro, P. Tos, S. Nicolino, C. Audisio, I. Perroteau, A. Chiaravalloti, C. Domenici, P. Giusti, G. Ciardelli, Melt-extruded guides for peripheral nerve regeneration. Part I: poly(epsilon-caprolactone). Biomed. Microdevices 11(5), 1037–1050 (2009)

    Article  Google Scholar 

  • I.P. Clements, Y.T. Kim, A.W. English, X. Lu, A. Chung, R.V. Bellamkonda, Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials 30(23–24), 3834–3846 (2009)

    Article  Google Scholar 

  • S.F. Cogan, Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008)

    Article  Google Scholar 

  • DuPont. DuPont flexible substrates for thin film BIPV and concentrate PV. 1-2. (2009).

  • Engel, J.M., Chen, J., Bullen, D., & Liu, C. Polyurethane rubber as a mems material: Characterization and demonstration of an all-polymer two-axis artificial hair cell flow sensor. MEMS 2005 Miami: Technical Digest, 279–282. (2005)

  • J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, Dry etching of polydimethylsiloxane for microfluidic systems. J. Vacuum Sci. Technol. A Vacuum Surf. Films 20(3), 975–982 (2002)

    Article  Google Scholar 

  • V.M. Graubner, R. Jordan, O. Nuyken, T. Lippert, M. Hauer, B. Schnyder, A. Wokaun, Incubation and ablation behavior of poly(dimethylsiloxane) for 266 nm irradiation. Appl. Surf. Sci. 197, 786–790 (2002)

    Article  Google Scholar 

  • O. Graudejus, Z. Yu, J. Jones, B. Morrison, S. Wagner, Characterization and application of an elastically stretchable microelectrode array to neural field potential recordings. J. Electrochem. Soc. 156(6), P85–P94 (2009)

    Article  Google Scholar 

  • I.M. Graz, Cotton, D.P.J., & Lacour, S.P., Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 94 (7) (2009)

  • M.A. Green, L.E. Bilston, R. Sinkus, In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 21(7), 755–764 (2008)

    Article  Google Scholar 

  • J.R. Greer, W.C. Oliver, W.D. Nix, Size dependence in mechanical properties of gold at the micron scale in the absence of strain gradients (vol 53, pg 1821, 2005). Acta Mater. 54(6), 1705 (2006)

    Article  Google Scholar 

  • W. He, R. Bellamkonda, A molecular perspective on understanding and modulating the performance of chronic central nervous system recording electrodes. In A molecular perspective on understanding and modulating the performance of chronic central nervous system recording electrodes (CRC, Boca Raton, 2008)

  • N. Jackson, S. Anand, M. Okandan, J. Muthuswamy, Nonhermetic encapsulation materials for MEMS-based movable microelectrodes for long-term implantation in the brain. J. Microelectromech. Syst. 18(6), 1234–1245 (2009)

    Article  Google Scholar 

  • D.B. Jaroch, M.P. Ward, E.Y. Chow, J.L. Rickus, P.P. Irazoqui, Magnetic insertion system for flexible electrode implantation. J. Neurosci. Meth. 183(2), 213–222 (2009)

    Article  Google Scholar 

  • T.D.Y. Kozai, D.R. Kipke, Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J. Neurosci. Meth. 184(2), 199–205 (2009)

    Article  Google Scholar 

  • K. Kumar, J. Wilson, R. Taylor, S. Gupta, Complications of spinal cord stimulation, suggestions to improve outcome, and financial impact. J. Neurosurg. Spine 5(9), 191–203 (2006)

    Article  Google Scholar 

  • S.P. Lacour, Chan, D., Wagner, S., Li, T., & Suo, Z.G., Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88(20) (2006)

  • S.P. Lacour, J. Jones, Z. Suo, S. Wagner, Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett. 25(4), 179–181 (2004)

    Article  Google Scholar 

  • S.P. Lacour, C. Tsay, S. Wagner, Z. Yu, B. Morrison, Stretchable micro-electrode arrays for dynamic neuronal recording of in vitro mechanically injured brain. Ieee Sens 1 and 2, 617–620 (2005)

    Article  Google Scholar 

  • T. Li, Z. Suo, Deformability of thin metal films on elastomer substrates. Int. J. Solids Struct. 43(7–8), 2351–2363 (2006)

    Article  MATH  Google Scholar 

  • M. Maiti, M. Bhattacharya, A.K. Bhowmick, Elastomer nanocomposites. Rubber Chem. Technol. 81(3), 384–469 (2008)

    Article  Google Scholar 

  • J.E. Mark, Some novel polymeric nanocomposites. Acc. Chem. Res. 39(12), 881–888 (2006)

    Article  Google Scholar 

  • M.A. McClain, LaPlaca, M.C., & Allen, M.G., Spun-cast micromolding for etchless micropatterning of electrically functional PDMS structures. J. Micromech. Microeng. 19(10) (2009)

  • K.W. Meacham, R.J. Giuly, L. Guo, S. Hochman, S.P. DeWeerth, A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed. Microdevices 10(2), 259–269 (2008)

    Article  Google Scholar 

  • R. Morent, N. De Geyter, F. Axisa, N. De Smet, L. Gengembre, E. De Leersnyder, C. Leys, J. Vanfleteren, M. Rymarczyk-Machal, E. Schacht, E. Payen, Adhesion enhancement by a dielectric barrier discharge of PDMS used for flexible and stretchable electronics. J. Phys. D Appl. Phys. 40(23), 7392–7401 (2007)

    Article  Google Scholar 

  • Y. Nam, K. Musick, B.C. Wheeler, Application of a PDMS microstencil as a replaceable insulator toward a single-use planar microelectrode array. Biomed. Microdevices 8(4), 375–381 (2006)

    Article  Google Scholar 

  • E. Ostuni, R. Kane, C.S. Chen, D.E. Ingber, G.M. Whitesides, Patterning mammalian cells using elastomeric membranes. Langmuir 16(20), 7811–7819 (2000)

    Article  Google Scholar 

  • K.J. Paralikar, R.S. Clement, Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance. IEEE Trans. Biomed. Eng. 55(9), 2258–2267 (2008)

    Article  Google Scholar 

  • R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q.B. Pei, S. Chiba, High-field deformation of elastomeric dielectrics for actuators. Mater. Sci. Eng. C Biomimetic Supramol. Syst. 11(2), 89–100 (2000)

    Article  Google Scholar 

  • Pornsin-Sirirak, T.N., Tai, Y.C., Nassef, H., & Ho, C.M. 2001. Flexible parylene actuator for micro adaptive flow control.

  • H.J. Qi, K. Joyce, M.C. Boyce, Durometer hardness and the stress-strain behavior of elastomeric materials. Rubber Chem. Technol. 76(2), 419–435 (2003)

    Article  Google Scholar 

  • S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19(3), 470–478 (2009)

    Article  Google Scholar 

  • P.J. Rousche, D.S. Pellinen, D.P. Pivin, J.C. Williams, R.J. Vetter, D.R. Kipke, Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48(3), 361–371 (2001)

    Article  Google Scholar 

  • A. Sayah, V.K. Parashar, M.A.M. Gijs, LF55GN photosensitive flexopolymer: a new material for ultrathick and high-aspect-ratio MEMS fabrication. J. Microelectromech. Syst. 16(3), 564–570 (2007)

    Article  Google Scholar 

  • A. Scheiner, G. Polando, E.B. Marsolais, Design and clinical application of a double helix electrode for functional electrical stimulation. IEEE Trans. Biomed. Eng. 41(5), 425–431 (1994)

    Article  Google Scholar 

  • F. Schneider, Fellner, T., Wilde, J., & Wallrabe, U., Mechanical properties of silicones for MEMS. J. Micromech. Microeng. 18(6) (2008)

  • J.P. Seymour, D.R. Kipke, Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28(25), 3594–3607 (2007)

    Article  Google Scholar 

  • H.Q. She, M.K. Chaudhury, Estimation of adhesion hysteresis using rolling contact mechanics. Langmuir 16(2), 622–625 (2000)

    Article  Google Scholar 

  • S.K. Sia, G.M. Whitesides, Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21), 3563–3576 (2003)

    Article  Google Scholar 

  • L. Smith, The language of rubber (Butterworth-Heinemann, Oxford, 1993)

    Google Scholar 

  • T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101(27), 9966–9970 (2004)

    Article  Google Scholar 

  • P. Stice, A. Gilletti, A. Panitch, J. Muthuswamy, Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex. J. Neural Eng. 4, 42–53 (2007)

    Article  Google Scholar 

  • J.M. Subbaroyan, D.R. Kipke, A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural Eng. 2(4), 10 (2005)

    Article  Google Scholar 

  • Y.J. Sun, B. Akhremitchev, G.C. Walker, Using the adhesive interaction between atomic force microscopy tips and polymer surfaces to measure the elastic modulus of compliant samples. Langmuir 20(14), 5837–5845 (2004)

    Article  Google Scholar 

  • K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, Out-of-plane microtube arrays for drug delivery-liquid flow properties and an application to the nerve block test. Biomed. Microdevices 11(3), 539–545 (2009)

    Article  Google Scholar 

  • H. Van Swygenhoven, J.R. Weertman, Deformation in nanocrystalline metals. Mater. Today 9(5), 24–31 (2006)

    Article  Google Scholar 

  • R.P. von Metzen, T. Stieglitz, A wireless system for monitoring polymer encapsulations. 2007 Annu. Int. Conf. Ieee Eng. Med. Biol. Soc. 1–16, 6601–6604 (2007)

    Google Scholar 

  • J.M. Wasikiewicz, N. Roohpour, D. Paul, M. Grahn, D. Ateh, I. Rehman, P. Vadgama, Polymeric barrier membranes for device packaging, diffusive control and biocompatibility. Appl. Surf. Sci. 255(2), 340–343 (2008)

    Article  Google Scholar 

  • R. Weast, Handbook of chemistry and physics, 60th edn. (CRC, Boca Raton, 1979)

    Google Scholar 

  • D.F. Williams, On the mechanisms of biocompatibility. Biomaterials 29(20), 2941–2953 (2008)

    Article  Google Scholar 

  • C.P. Wu, W.P. Luk, J. Gillis, F. Skinner, L. Zhang, Size does matter: generation of intrinsic network rhythms in thick mouse hippocampal slices. J. Neurophysiol. 93(4), 2302–2317 (2005)

    Article  Google Scholar 

  • Y.N. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  Google Scholar 

  • T. Ye, Z. Suo, A. Evans, Thin film cracking and the roles of substrate and interface. Int. J. Solids Struct. 29(21), 2639–2648 (1992)

    Article  Google Scholar 

  • W.C. Young, Roark's formulas for stress and strain, 6th edn. (McGraw-Hill, New York, 1989)

    Google Scholar 

  • Z. Yu, O. Graudejus, C. Tsay, S.P. Lacour, S. Wagner, B. Morrison, Monitoring electrical activity from hippocampal tissue during large electrode deformation. J. Neurotrauma 26, 1135–1145 (2009)

    Article  Google Scholar 

  • Yu, Z., Tsay, C., Lacour, S.P., Wagner, S., & Morrison, B. 2006. Stretchable microelectrode arrays- a tool for discovering mechanisms of functional deficits underlying traumatic brain injury and interfacing neurons with neuroprosthetics. Conf Proc IEEE Eng Med Biol Soc Suppl, 6732–6735.

  • Z. Yu, O. Graudejus, C. Tsay, S.P. Lacour, S. Wagner, B. Morrison, A new tool for monitoring neuroelectrical activity during brain tissue deformation: stretchable microelectrode arrays. J. Neurotrauma 24(7), 200 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxine A. McClain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(PPT 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClain, M.A., Clements, I.P., Shafer, R.H. et al. Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS. Biomed Microdevices 13, 361–373 (2011). https://doi.org/10.1007/s10544-010-9505-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9505-3

Keywords

Navigation