Skip to main content

Advertisement

Log in

Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The formation of micro-scale monodispersed emulsions is crucial for a variety of applications such as cosmetics, food industry and biotechnology. In this study, a new microfluidic chip with a multiple-channel layout for high-throughput emulsions is reported. This chip generated fine-tuned and uniform microdroplets in liquids with a higher throughput for emulsification applications. It employed a combination of multiple hydrodynamic flow focusing and liquid-cutting devices called “active pneumatic choppers.” Experimental data indicated that oil-in-water microdroplets with diameters ranging from 6 to 120 μm can be successfully generated with a coefficient of variation less than 3.75%. The size of the droplets can be actively fine-tuned by using two approaches by adjusting relative sheath/sample flow velocity ratios and chopping frequency. Finally, two commonly used biocompatible materials, including collagen and calcium-alginate (Ca-alginate), were used to form microspheres by utilizing the liquid-cutting technique. The developed microfluidic chip is promising in various applications including biotechnology, nano-medicine and cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Ca:

calcium

CCD:

charge-coupled device

DI water:

deionized water

DNA:

deoxyribonucleic acid

EMV:

electromagnetic valve

f EMV :

operating frequency of EMV

HLB:

hydrophilic lipophilic balance

MEMS:

micro-electro-mechanical-systems

Na:

sodium

PDMS:

polydimethylsiloxane

PCR:

polymerase chain reaction

SEM:

scanning electron microscope

V 1 :

sample flow velocity

V 2 :

sheath flow velocity

o/w:

oil-in-water

w/o:

water-in-oil

References

  • S.L. Anna, N. Bontoux, H.A. Stone, Formation of dispersions using ‘flow-focusing’ in microchannels. Appl. Phys. Lett. 82, 364–366 (2003)

    Article  Google Scholar 

  • R. Arshady, Microspheres and microcapsules: A survey of manufacturing techniques. Part II: Coacervation. Polym. Eng. Sci. 30, 905–914 (1990)

    Article  Google Scholar 

  • A. Berthold, K. Cremer, J. Kreuter, Collagen microparticles: Carriers for glucocorticosteroids. Eur. J. Pharm. Biopharm. 45, 23–29 (1998)

    Article  Google Scholar 

  • D.T. Birnbaum, L. Brannon-Peppas, Microparticle Drug Delivery Systems, in Drug Delivery Systems in Cancer Therapy (Humana, Totowa, NJ, 2003), pp 117–135

  • L.W. Chan, H.Y. Lee, P.W. Heng, Production of alginate micro-spheres by internal gelation using an emulsification method. Int. J. Pharm. 242, 259–262 (2002)

    Article  Google Scholar 

  • C.T. Chen, G.B. Lee, Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip. Journal of Microelectromechanical Systems 15, 1492–1498 (2006)

    Article  MathSciNet  Google Scholar 

  • S.C. Chen, Y.C. Wu, F.L. Mi, Y.H. Lin, L.C. Yu, H.W. Sung, A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross- linked by genipin for protein drug delivery. J. Control. Release 96, 285–300 (2004)

    Article  Google Scholar 

  • G. Coppi, V. Iannuccelli, M.T. Bernabei, R. Cameroni, Int. J. Pharm. 242, 263–266 (2002)

    Article  Google Scholar 

  • C. Dong, J.A. Rogers, Acacia-gelatin microencapsulated liposomes: Preparation, stability, and release of acetylsalicylic acid. Pharm. Res. 10, 141–146 (1993)

    Article  Google Scholar 

  • S. El-Mahdy, E.S. Ibrahim, S. Safwat, A. El-Sayed, H. Ohshima, K. Makino, N. Muramatsu, T. Kondo, Effects of preparation conditions on the monodispersity of albumin microspheres. J. Microencapsul. 15, 661–673 (1998)

    Google Scholar 

  • S.E. Friberg, K. Larsson, Food emulsions. (Marcel Dekker, USA, 1997), pp. 189–233

    Google Scholar 

  • G. Fundueanu, E. Esposito, D. Mihai, A. Carpov, J. Desbrieres, M. Rinaudo, C. Nastruzzi, Preparation and characterization of Ca-alginate microspheres by a new emulsification method. Int. J. Pharm. 170, 11–21 (1998)

    Article  Google Scholar 

  • P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett 85, 2649–2651 (2004)

    Article  Google Scholar 

  • T. Hamouda, M.M. Hayes, Z. Cao, R. Tonda, K. Johnson, D.C. Wright, J. Brisker, J.R. Baker, A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species. J. Infect. Dis. 180, 1939–1949 (1999)

    Article  Google Scholar 

  • B. Han, L.L.H. Huang, D.T. Cheung, M.E. Nimni, Collagen derived matrices and related polypeptide growth factors: their potential for tissue repair and organ regeneration, in Tissue Engineering of Prosthetic Vascular Grafts, ed. by P. Zilla (Landes, 1999)

  • S.K. Hsiung, C.T. Chen, G.B. Lee, Micro-droplet formation utilizing microfluidic flow focusing and controllable moving-wall chopping techniques. J. Micromechanics Microengineering 16, 2403–2410 (2006)

    Article  Google Scholar 

  • F.Y. Hsu, S.C. Chueh, Y.J. Wang, Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials 20, 1931–1936 (1999)

    Article  Google Scholar 

  • L.L.H. Huang, M.E. Nimni, Preparation of type I collagen fibrillar matrices and the effects of collagen concentration on fibroblast contraction. Journal of Biomedical Engineering, Application, Basis, and Communications 5, 664–675 (1993)

    Google Scholar 

  • L.L.H. Huang, K.H. Chen, C.C. Huang, The development and prospects of tissue engineering. Formosan Journal of Medicine 5, 646–653 (2001)

    Google Scholar 

  • K.S. Huang, T.H. Lai, Y.C. Lin, Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6, 954–957 (2006)

    Article  Google Scholar 

  • R. Katoh, Y. Asano, A. Furuya, K. Sotoyama, M. Tomota, Preparation of food emulsions using a membrane emulsification system. J. Membr. Sci. 113, 131–135 (1996)

    Article  Google Scholar 

  • T. Kawakatsu, Y. Kikuchi, M. Nakajima, Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem. Soc. 74, 317–321 (1997)

    Article  Google Scholar 

  • T. Kawakatsu, C. Trägårdh, M. Nakajima, N. Oda, T. Yonemoto, The effect of the hydrophobicity of microchannels and components in water-and-oil emulsification. Colloids Surf., A Physicochem. Eng. Asp. 179, 29–37 (2001)

    Article  Google Scholar 

  • K.H. Kim, S. Gohtani, Y. Yamano, Effect of oil droplets on brittleness of o/w emulsion gel. J. Dispers. Sci. Technol. 18, 199–210 (1996)

    Article  Google Scholar 

  • T. Kojima, Y. Takei, M. Ohtsuka, Y. Kawarasaki, T. Yamane, H. Nakano, PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets. Nucleic Acids Res. 33, e150 (2005)

    Article  Google Scholar 

  • A.V. Korobko, W. Jesse, J.R.C. van der Maarel, Encapsulation of DNA by cationic diblock copolymer vesicles. Langmuir 21, 34–42 (2005)

    Article  Google Scholar 

  • G.B. Lee, B.H. Hwei, G.R. Huang, Micromachined pre-focused MxN f low switches for continuous sample injection. J. Micromechanics Microengineering 11, 654–661 (2001)

    Article  Google Scholar 

  • M. Leonarda, M.R.D. Boisseson, P. Huberta, F. Dalenconb, E. Dellacheriea, Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J. Control. Release 98, 395–405 (2004)

    Article  Google Scholar 

  • S.M. Moghimi, A.C. Hunter, J.C. Murray, Nanomedicine: Current status and future prospects. FASEB J. 19, 311–330 (2005)

    Article  Google Scholar 

  • Y. Murata, K. Kofuji, S. Kawashima, Preparation of floating alginate gel beads for drug delivery to the gastric mucosa. J. Biomater. Sci., Polymer Ed. 14(6), 581–588 (2003)

    Article  Google Scholar 

  • K. Nakagawa, S. Iwamoto, M. Nakajima, A. Shono, K. Satoh, Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation. J. Colloid Interface Sci. 278, 198–205 (2004)

    Article  Google Scholar 

  • S. Okushima, T. Nisisako, T. Torii, T. Higuchi, Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20, 9905–9908 (2004)

    Article  Google Scholar 

  • S. Omi, K. Katami, K. Taguchi, M. Iso, Synthesis of uniform PMMA microspheres employing modified SPG emulsification technique. J. Appl. Polym. Sci. 57, 1013–1024 (1995)

    Article  Google Scholar 

  • H.Y. Park, I.H. Song, J.H. Kim, W.S. Kim, Preparation of thermally denatured albumin gel and its pH-sensitive swelling. Int. J. Pharm. 175, 231–236 (1998a)

    Article  Google Scholar 

  • H.Y. Park, C.R. Choi, J.H. Kim, W.S. Kim, Effect of pH on drug delivery from polysaccharide tablets. Drug Deliv. 5, 13–18 (1998b)

    Article  Google Scholar 

  • Qurrat-ul-Ain, S. Sharma, G.K. Khuller, S.K. Garg, Alginate-based oral drug delivery system for tuberculosis: Pharmacokinetics and therapeutic effects. J. Antimicrob. Chemother. 51, 931–938 (2003)

    Article  Google Scholar 

  • F. Shahidi, X. Han, Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 33, 501–547 (1993)

    Article  Google Scholar 

  • S. Sugiura, M. Nakajima, S. Iwamoto, M. Seki, Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17, 5562–5566 (2001a)

    Article  Google Scholar 

  • S. Sugiura, M. Nakajima, H. Ushijima, K. Yamamoto, M. Seki, J. Chem. Eng. Jpn. 34, 757–765 (2001b)

    Article  Google Scholar 

  • S. Sugiura, M. Nakajima, N. Kumazawa, S. Iwamoto, M. Seki, Characterization of spontaneous transformation-based droplet formation during microchannel emulsification. J. Phys. Chem., B 106 9405–9409 (2002)

    Article  Google Scholar 

  • S. Sugiura, T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, M. Nakajima, Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 26, 3327–3331 (2005)

    Article  Google Scholar 

  • Y.C. Tan, V. Cristini, A.P. Lee, Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens. Actuators, B, Chem. 114, 350–356 (2005)

    Article  Google Scholar 

  • M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000)

    Article  Google Scholar 

  • A.L. Weiner, S.S. Carpenter-Green, E.C. Soehngen, R.P. Lenk, M.C. Popescu, Liposome–collagen gel matrix: A novel sustained drug delivery system. J. Pharm. Sci. 74(9), 922–925 (1985)

    Article  Google Scholar 

  • C. Wibowo, K.M. Ng, Product-oriented process synthesis and development: creams and pastes. AIChE J. 47, 2746–2767 (2001)

    Article  Google Scholar 

  • J.O. You, S.B. Park, H.Y. Park, S. Haam, C.H. Chung, W.S. Kim, Preparation of regular sized Ca-alginate microspheres using membrane emulsification method. J. Microencapsul. 18(4), 521–532 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank partial financial support from the National Science Council in Taiwan. Access to major fabrication equipment at the Center for Micro/Nano Technology Research, National Cheng Kung University is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwo-Bin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YH., Chen, CT., Huang, L.L.H. et al. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications. Biomed Microdevices 9, 833–843 (2007). https://doi.org/10.1007/s10544-007-9096-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9096-9

Keywords

Navigation