Skip to main content
Log in

A simple device using magnetic transportation for droplet-based PCR

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The Polymerase chain reaction (PCR) was successfully and rapidly performed in a simple reaction device devoid of channels, pumps, valves, or other control elements used in conventional lab-on-a-chip technology. The basic concept of this device is the transportation of aqueous droplets containing hydrophilic magnetic beads in a flat-bottomed, tray-type reactor filled with silicone oil. The whole droplets sink to the bottom of the reactor because their specific gravity is greater than that of the silicone oil used here. The droplets follow the movement of a magnet located underneath the reactor. The notable advantage of the droplet-based PCR is the ability to switch rapidly the proposed reaction temperature by moving the droplets to the required temperature zones in the temperature gradient. The droplet-based reciprocative thermal cycling was performed by moving the droplets composed of PCR reaction mixture to the designated temperature zones on a linear temperature gradient from 50°C to 94°C generated on the flat bottom plate of the tray reactor. Using human-derived DNA containing the mitochondria genes as the amplification targets, the droplet-based PCR with magnetic reciprocative thermal cycling successfully provided the five PCR products ranging from 126 to 1,219 bp in 11 min with 30 cycles. More remarkably, the human genomic gene amplification targeting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was accomplished rapidly in 3.6 min with 40 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • M. Chabert, K.D. Dorfman, P. Cremoux, J. Roeraade, J.L. Viovy, Anal. Chem. 78, 7722 (2006)

    Article  Google Scholar 

  • R.B. Fair, A. Khlystov, V. Srinivasan, V. Pamula, K.N. Weaver, in Devices, and Applications, Conf. 5591, SPIE Optics East, Philadelphia, 2004

  • M. Hashimoto, P. Chen, M.W. Mitchell, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, Lab Chip 4, 683 (2004)

    Article  Google Scholar 

  • C.G. Koh, W. Tan, M.Q. Zhao, A.J. Ricco, Z.H. Fan, Anal. Chem. 75, 4591 (2003)

    Article  Google Scholar 

  • M.U. Kopp, A.J. DeMello, A. Manz, Science 280, 1046 (1998)

    Article  Google Scholar 

  • Y.J. Liu, C.B. Rauch, R.L. Stevens, R. Lenigk, J.N. Yang, D.B. Rhine, P. Grodzinski, Anal. Chem. 74, 3063 (2002)

    Article  Google Scholar 

  • K.B. Mullis, F.A. Faloona, Methods Enzymol. 155, 335 (1987)

    Article  Google Scholar 

  • H. Nagai, Y. Murakami, Y. Morita, K. Yokoyama, E. Tamiya, Anal. Chem. 73, 1043 (2001)

    Article  Google Scholar 

  • S. Raja, J. Ching, L. Xi, S.J. Hughes, R. Chang, W. Wong, W. McMillan, W.E. Gooding, K.S. McCarty Jr., M. Chestney, J.D. Luketich, T.E. Godfrey, Clin. Chem. 51, 882 (2005)

    Article  Google Scholar 

  • A. Rida, V. Fernandez, M.A.M. Gijs, Appl. Phys. Lett. 83, 2396 (2003)

    Article  Google Scholar 

  • R.K. Saiki, D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, H.A. Erlich, Science 29, 487 (1988)

    Article  Google Scholar 

  • J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1989)

    Google Scholar 

  • I. Schneegaß, R. Bräutigam, J.M. Köhler, Lab Chip 1, 42 (2001)

    Article  Google Scholar 

  • M. Shikida, K. Takayanagi, K. Inouchi, H. Honda, K. Sato, Sens. Actuators, B 113, 563 (2006)

    Article  Google Scholar 

  • T. Taniguchi, T. Torii, T. Higuchi, Lab Chip 2, 19 (2002)

    Article  Google Scholar 

  • J. Wang, Z. Chen, P.L.A.M. Corstjens, M.G. Mauk, H.H. Bau, Lab Chip 6, 46 (2006)

    Article  Google Scholar 

  • E.K. Wheeler, W. Benett, P. Stratton, J. Richards, A. Chen, A. Christian, K.D. Ness, J. Ortega, L.G. Li, T.H. Weisgraber, K. Goodson, F. Milanovich, Anal. Chem. 76, 4011 (2004)

    Article  Google Scholar 

  • Q. Xiang, B. Xu, R. Fu, D. Li, Biomed. Microdevices 7, 273 (2005)

    Article  Google Scholar 

  • J. Yang, Y. Liu, C.B. Rauch, R.L. Stevens, R.H. Liu, R. Lenigk, P. Grodzinski, Lab Chip 2, 179 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Hiroki Honda, Ryu Konoshita, and Atsushi Inami of this laboratory and Shoichi Konishi of Shimadzu Engineering Inc. for their helping manufacture the prototype for the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Ohashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohashi, T., Kuyama, H., Hanafusa, N. et al. A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices 9, 695–702 (2007). https://doi.org/10.1007/s10544-007-9078-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9078-y

Keywords

Navigation