Skip to main content
Log in

Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Perfusion cell culture is believed to provide a stable culture environment due to the continuous supply of nutrients and removal of waste. However, the culture scales used in most cases were large, where the culture conditions can not be regarded as homogenous because of chemical gradients. To improve this, the concept of miniaturization is applied to 3-D cell culture. In this study, a simple perfusion microbioreactor was developed based on mass transport simulation to find out the reasonable culture scales with relatively lower chemical gradients. Besides, PDMS surface was treated with surfactant solution to reduce non-specific serum protein adsorption, which keeps the culture conditions steady. Chondrocyte 3-D culture using the proposed microbioreactors was compared with similar perfusion culture with a larger culture scale. Results showed that surfactant-treated PDMS surface could reduce serum protein adsorption by 85% over the native one. Also, microbioreactors were proved to provide a stable culture environment (e.g. pH) over the culture period. Cell culture scale of 200 μm thick culture construct was justified to have relatively lower chemical gradients than the larger scale perfusion culture. As a whole, the proposed culture system is capable of providing a well-defined and homogenous culture environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Amiji and K. Park, Biomaterials 13, 682–692 (1992).

    Article  Google Scholar 

  • J.R. Anderson, D.T. Chiu, J.C. McDonald, R.J. Jackman, O. Cherniavskaya, H. Wu, S. Whitesides, and G.M. Whitesides, Anal. Chem. 72, 3158–3164 (2000).

    Article  Google Scholar 

  • S.R.S. Bibby, D.A. Jones, R.M. Ripley, and J.P.G. Urban, Spine 30, 487–496 (2005).

    Article  Google Scholar 

  • A.W. Blau and C.M. Ziegler, J. Biochem. Biophys. Meth. 50, 15–27 (2001).

    Article  Google Scholar 

  • T. Braschler, R. Johann, M. Heule, L. Metref, and P. Renaud, Lab. Chip 5, 553–559 (2005).

    Article  Google Scholar 

  • P.G. Chao, Z. Tang, E. Angelini, A.C. West, K.D. Costa, and C.T. Hung, J. Biomech. 38, 1273–1281 (2005).

    Article  Google Scholar 

  • S.G. Charati and S.A. Sterm, Macromolecules 31, 5529–5535 (1998).

    Article  Google Scholar 

  • V.I. Chin, P. Taupin, S. Shanga, J. Scheel, F.H. Gage, and S.N. Bhatia, Biotechnol. Bioengin. 88, 399–415 (2004).

    Article  Google Scholar 

  • B.G. Chung, L.A. Flanagan, S.W. Rhee, P.H. Schwartz, A.P. Lee, E.S. Monuki, and N.L. Jeon, Lab. Chip 5, 401–406 (2005).

    Article  Google Scholar 

  • T. Davisson, R.L. Sah, and A. Ratcliffe, Tiss. Eng. 8, 807–816 (2002).

    Article  Google Scholar 

  • R.W. Farndale, D.J. Buttle, and A.J. Barrett, J. Biochim. Biophys. Acta. 883, 173 177 (1986).

    Google Scholar 

  • A.M. Freyria, M.C. Ronziere, S. Roche, C.F. Rousseau, and D. Herbage, J. Cell. Biochem. 76, 84–98 (1999).

    Article  Google Scholar 

  • J. Glowacki, K.E. Yates, R. MacLean, and S. Mizuno, Orthod Craniof. Res. 8, 200–208 (2005).

    Article  Google Scholar 

  • M.J. Grimshaw, and R.M. Mason, Osteoarthritis Cartilage 8, 386–392 (2000).

    Article  Google Scholar 

  • C.D. Hoemann, J. Sun, V. Chrzanowski, and M.D. Buschmann, Anal. Biochemi. 300, 1–10 (2002).

    Article  Google Scholar 

  • P.J. Hung, P.J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L.P. Lee, Lab. Chip 5, 44–48 (2004).

    Article  Google Scholar 

  • M. Jakob, O. Demarteau, D. Schafer, W. Hintermann, W. Dick, M. Heberer, and I. Martin, J. Cell. Biochem. 81, 368–377 (2001).

    Article  Google Scholar 

  • E. Leclerc, Y. Sakai, and T. Fujii, Biomed. Microdev. 5, 109–114 (2003).

    Article  Google Scholar 

  • E. Leclerc, Y. Sakai, and T. Fujii, Biotechnol. Prog. 20, 750–755 (2004).

    Article  Google Scholar 

  • R.B. Lee and J.P.G. Urban, Biochem. J. 321, 95–102 (1997).

    Google Scholar 

  • R.B. Lee and J.P.G. Urban, Arthritis and Rheumatism 46, 3190–3200 (2002).

    Article  Google Scholar 

  • J. Malda, P. Van Den Brink, P. Meeuwse, M. Grojec, D.E. Martens, J. Tramper and J. Riesle, Tiss. Eng. 10, 987–994 (2004).

    Google Scholar 

  • H. Mirzadeh, F. Shokrolashi, and M. Daliri, J. Biomed. Mater. Res. 67A, 727–732 (2003).

    Article  Google Scholar 

  • S. Mizuno, F. Allemann, and J. Glowacki, J. Biomed. Mater. Res. 56, 368–375 (2001).

    Article  Google Scholar 

  • D. Pazzano, K.A. Mercier, J.M. Moran, S.S. Fong, D.D. Dibiasio, J.X. Rulfs, S.S. Kohles, and L.J. Bonassar, Biotechnol. Prog. 16, 893–896 (2000).

    Article  Google Scholar 

  • A. Pluen, P.A. Netti, R.K. Jain, and D.A. Berk, Biophys. J. 77, 542–552 (1999).

    Google Scholar 

  • M. Radisic, L. Yang, J. Boublik, R.J. Cohen, R. Langer, L.E. Freed, and G. Vunjak-Novakovic, Am. J. Physiol. Heart Circ. Physiol. 286:507–516 (2003).

    Article  Google Scholar 

  • S. Razaq, R.J. Wilkins, and J.P.G. Urban, Eur. Spine. J. 12, 341–349 (2003).

    Article  Google Scholar 

  • S.W. Rhee, A.M. Taylor, C.H. Tu, D.H. Cribbs, C.W. Cotman, and N.L. Jeon, Lab. Chip 5, 102–107 (2005).

    Article  Google Scholar 

  • E.R. Schwartz, P.R. Kirkpatrick, and R.C. Thompson, J. Lab. Clin. Med. 87, 198–205 (1976).

    Google Scholar 

  • M. Sittinger, O. Schultz, G. Keyszer, W.W. Minuth, and G.R. Burmester, Int. J. Artif. Organs 20, 57–62 (1997).

    Google Scholar 

  • Y.S. Torisawa, H. Shiku, T. Yasukawa, M. Nishizawa, and T. Matsue, Biomaterials 26, 2165–2172 (2005).

    Article  Google Scholar 

  • A. Tourovskaia, X. Figueroa-Masot, and A. Folch, Lab. Chip 5, 14–19 (2004).

    Article  Google Scholar 

  • G.J.V. Van Osch, W.B. Van Den Berg, E.B. Hunziker, and H.J. Hauselmann, Osteoarthritis and Cartilage 6, 187–195 (1998).

    Article  Google Scholar 

  • S.D. Waldman, D.C. Couto, S.J. Omelon, and R.A. Kandel, Tissue Eng. 10, 1633–1640 (2004).

    Article  Google Scholar 

  • G.M. Walker, H.C. Zeringue, and D.J. Beebe, Lab. Chip. 4, 91–97 (2004).

    Article  Google Scholar 

  • C. Williams and T.M. Wick, Tissue Eng. 10, 930–941 (2004).

    Article  Google Scholar 

  • J.H. Wittig Jr, A.F. Ryan, and P.M. Asbeck, J. Neurosci. Meth. 144, 79–89 (2005).

    Article  Google Scholar 

  • F. Wu, N. Dunkelman, A. Peterson, T. Davisson, R.D.L. Torre, and D. Jain, Ann. NY Acad. Scie. 875, 405–411 (1999).

    Article  Google Scholar 

  • X. Xu, J.P.G. Urban, U. Tirlapur, M.H. Wu, Z. Cui, and Z.F. Cui, Biotechnol. Bioengine. 93, 1103–1111 (2006).

    Article  Google Scholar 

  • T. Zhang and H.H.P. Fang, Envir. Technol. 26, 155–160 (2005).

    Article  Google Scholar 

  • S. Zhou, Z.F. Cui, and J.P.G. Urban, Arthritis & Rheumatism 50, 3915–3924 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Feng Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M.H., Urban, J.P.G., Cui, Z. et al. Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture. Biomed Microdevices 8, 331–340 (2006). https://doi.org/10.1007/s10544-006-9597-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9597-y

Keywords

Navigation