Skip to main content
Log in

Development and Evaluation of Cell Culture Devices with the Gas-permeable Membrane

  • Research Paper
  • Bioprocess Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Single-use plastic culture devices are commonly used for two-dimensional (2-D) cell cultures. However, as oxygen is generally supplied by uni-directional diffusion from the top gas-liquid interface, 2-D cell cultures in the absence of medium flow may experience rapid exhaustion of dissolved oxygen at the bottom of culture wares with high cell densities. To overcome this issue, special cell culture devices utilizing the gas-permeable membrane at the bottom have been developed. The gas-permeable membrane can provide additional oxygen supply thorough rapid equilibration of dissolved oxygen at the bottom of culture ware, where cells are growing. In this study, using typical cell lines such as CHO and HEK-293A, cell growth, metabolic activity, and productivity were evaluated in gas-permeable culture devices compared to those from conventional gas-impermeable culture devices. The specific glucose consumption rate and the yield of lactate from glucose were decreased, revealing the effective utilization of glucose to produce ATP by enhanced supply of oxygen in gas-permeable culture devices. This effect was more clearly observed at in vivo-like pericellular conditions with low oxygen level (5% O2 in the gas phase). The 2-D cell culture device with the gas-permeable membrane at the bottom has shown it’s attractive performance for expansion of therapeutic cells that request pericellular conditions particularly, which is important for the maintenance of in vivo cellular activities, including differentiation and proliferation with appropriate cell growth, metabolic activity, and productivity as shown here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J. B. (2005) Three-dimensional tissue culture models in cancer biology. Semin. Cancer Biol. 15: 365–377.

    Article  Google Scholar 

  2. Yip, D. and C. H. Cho (2013) A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Biochem. Biophys. Res. Commun. 433: 327–332.

    Article  CAS  Google Scholar 

  3. Chopra, V., T. V. Dinh, and E. V. Hannigan (1997) Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancers. In Vitro Cell Dev. Biol. Anim. 33: 432–442.

    Article  CAS  Google Scholar 

  4. Torisawa, Y. S., H. Shiku, T. Yasukawa, M. Nishizawa, and T. Matsue (2005) Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test. Biomaterials. 26: 2165–2172.

    Article  CAS  Google Scholar 

  5. Atkuri, K. R., L. A. Herzenberg, A. K. Niemi, T. Cowan, and L. A. Herzenberg (2007) Importance of culturing primary lymphocytes at physiological oxygen levels. Proc. Natl. Acad. Sci. USA. 104: 4547–4552.

    Article  CAS  Google Scholar 

  6. Sahaf, B., K. Atkuri, K. Heydari, M. Malipatlolla, J. Rappaport, E. Regulier, L. A. Herzenberg, and L. A. Herzenberg (2008) Culturing of human peripheral blood cells reveals unsuspected lymphocyte responses relevant to HIV disease. Proc. Natl. Acad. Sci. USA. 105: 5111–5116.

    Article  CAS  Google Scholar 

  7. Wolff, M., J. Fandrey, and W. Jelkmann (1993) Microelectrode measurements of pericellular PO2 in erythropoietin-producing human hepatoma cell cultures. Am. J. Physiol. 265: C1266–C1270.

    Article  CAS  Google Scholar 

  8. Jensen, M. D., D. F. Wallach, and P. Sherwood (1976) Diffusion in tissue cultures on gas-permeable and impermeable supports. J. Theor. Biol. 56: 443–458.

    Article  CAS  Google Scholar 

  9. Metzen, E., M. Wolff, J. Fandrey, and W. Jelkmann (1995) Pericellular PO2 and O2 consumption in monolayer cell cultures. Respir. Physiol. 100: 101–106.

    Article  CAS  Google Scholar 

  10. Weiszenstein, M., N. Pavlikova, M. Elkalaf, P. Halada, O. Seda, J. Trnka, J. Kovar, and J. Polak (2016) The effect of pericellular oxygen levels on proteomic profile and lipogenesis in 3T3-L1 differentiated preadipocytes cultured on gas-permeable cultureware. PLoS One. 11: e0152382.

    Article  Google Scholar 

  11. Ivanovic, Z. (2009) Hypoxia or in situ normoxia: The stem cell paradigm. J. Cell. Physiol. 219: 271–275.

    Article  CAS  Google Scholar 

  12. Wion, D., T. Christen, E. L. Barbier, and J. A. Coles (2009) PO2 matters in stem cell culture. Cell Stem Cell. 5: 242–243.

    Article  CAS  Google Scholar 

  13. Thomas, P. C., M. Halter, A. Tona, S. R. Raghavan, A. L. Plant, and S. P. Forry (2009) A noninvasive thin film sensor for monitoring oxygen tension during in vitro cell culture. Anal. Chem. 81: 9239–9246.

    Article  CAS  Google Scholar 

  14. de Souza, N. (2007) Too much of a good thing. Nat. Methods. 4: 386.

    Article  Google Scholar 

  15. Lynn, S. G., J. J. LaPres, and K. Studer-Rabeler (2011) Oxygen monitoring in cell cultures: Real-time, noninvasive measurement in multiwell plates is now possible during incubation. Genet. Eng. News. 31: 52–53.

    Article  Google Scholar 

  16. Amps, K. J., M. Jones, D. Baker, and H. D. Moore (2010) In situ cryopreservation of human embryonic stem cells in gas-permeable membrane culture cassettes for high post-thaw yield and good. Cryobiology. 60: 344–350.

    Article  CAS  Google Scholar 

  17. Salerno, S., E. Curcio, A. Bader, L. Giorno, E. Drioli, and L. De Bartolo (2018) Gas permeable membrane bioreactor for the co-culture of human skin derived mesenchymal stem cells with hepatocytes and endothelial cells. J. Memb. Sci. 563: 694–707.

    Article  CAS  Google Scholar 

  18. Luetchford, K. A., N. Wung, I. S. Argylea, M. P. Storm, S. D. Weston, D. Tosh, and M. J. Ellis (2018) Next generation in vitro liver model design: Combining a permeable polystyrene membrane with a trans differentiated cell line. J. Memb. Sci. 565: 425–438.

    Article  CAS  Google Scholar 

  19. Vera, J. F., L. J. Brenner, U. Gerdemann, M. C. Ngo, U. Sili, H. Liu, J. Wilson, G. Dotti, H. E. Heslop, A. M. Leen, and C. M. Rooney (2010) Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J. Immunother. 33: 305–315.

    Article  CAS  Google Scholar 

  20. Menzel, S., N. Finocchiaro, C. Donay, A. L. Thiebes, F. Hesselmann, J. Arens, S. Djeljadini, M. Wessling, T. Schmitz-Rode, S. Jockenhoevel, and C. G. Cornelissen (2017) Towards a biohybrid lung: endothelial cells promote oxygen transfer through gas permeable membranes. Biomed. Res. Int. 2017: 5258196.

    Article  Google Scholar 

  21. Gabridge, M. G. and M. F. Gladd (1984) Gaseous oxide toxicity evaluated with cell monolayers on collagen-coated, gas-permeable teflon membranes. Environ. Health Perspect. 54: 347–352.

    Article  CAS  Google Scholar 

  22. Petzinger, E., W. Föllmann, H. Acker, J. Hentschel, K. Zierold, and R. K. Kinne (1988) Primary liver cell cultures grown on gas permeable membrane as source for the collection of primary bile. In Vitro Cell Dev. Biol. 24: 491–499.

    Article  CAS  Google Scholar 

  23. Evenou, F., M. Hamon, T. Fujii, S. Takeuchi, and Y. Sakai (2011) Gas-permeable membranes and co-culture with fibroblasts enable high-density hepatocyte culture as multilayered liver tissues. Biotechnol. Prog. 27: 1146–1153.

    Article  CAS  Google Scholar 

  24. Wagner, B. A., S. Venkataraman, and G. R. Buettner (2011) The rate of oxygen utilization by cells. Free Radic. Biol. Med. 51: 700–712.

    Article  CAS  Google Scholar 

  25. Jorjani, P. and S. S. Ozturk (1999) Effects of cell density and temperature on oxygen consumption rate for different mammalian cell lines. Biotechnol. Bioeng. 64: 349–356.

    Article  CAS  Google Scholar 

  26. Guarino, R. D., L. E. Dike, T. A. Haq, J. A. Rowley, J. B. Pitner, and M. R. Timmins (2004) Method for determining oxygen consumption rates of static cultures from microplate measurements of pericellular dissolved oxygen concentration. Biotechnol. Bioeng. 86: 775–787.

    Article  CAS  Google Scholar 

  27. Sobotta, M. C., A. G. Barata, U. Schmidt, S. Mueller, G. Millonig, and T. P. Dick (2013) Exposing cells to H2O2: A quantitative comparison between continuous low-dose and one-time high-dose treatments. Free Radic. Biol. Med. 60: 325–335.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Ministry of Trade, Industry and Energy [Project number: 1415158631] and supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT [Project number: 1711094396].

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duk Jae Oh.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.M., Kim, D.H. & Oh, D.J. Development and Evaluation of Cell Culture Devices with the Gas-permeable Membrane. Biotechnol Bioproc E 25, 62–70 (2020). https://doi.org/10.1007/s12257-019-0149-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0149-8

Keywords

Navigation