Skip to main content
Log in

Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The optical spectra of yeast cells in phosphate buffer saline (PBS) were analyzed with an optical UV-vis sensor based on a shallow p + n junction realized in a low doped n-type epitaxial silicon layer grown on a strongly doped n + substrate. The presence of the n/n + interface allows a significantly enhanced sensitivity, due to an increased collection of carriers photogenerated both by short and large wavelengths in the range 250...800 nm. In our experiments the optical absorption of yeast cells was investigated in the wavelength range 250...500 nm as a function of the cells concentration in PBS in the range of 6 × 106–2 × 108 cells/ml. The main absorption peaks were found at 310, 350, 400 and 427 nm, respectively. A significant red shift of the wide absorption band at 427 nm has been observed when increasing cell concentration. This red shift behaviour was nonlinear, with saturation observed for yeast concentrations larger than 5 × 107 cells/ml. The half-peak bandwidth of this peak also showed a most significant nonlinear variation. These findings suggest that monitoring the parameters of the absorption band at 427 nm versus cells concentration could be used, e.g. using a dedicated integrated spectrometric microsystem, for fast quantitative measurements of yeast cell concentrations in various bio-samples, with possible applications in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. Bercu, T. Oncescu, L. Lupan, R. Bandula, M. Vasilescu, and T. Sandu, Fresenius J Anal Chem 355, 753 (1996).

    Google Scholar 

  • A. Biber, P. Seitz, and H. Jackel, Sensors and Actuators A90, 82–88 (2001).

    Google Scholar 

  • J.H. Correia, G. de Graaf, S.H. Kong, M. Bartek, and R.F. Wolffenbuttel, Sensors and Actuators A82, 191–197 (2000).

    Google Scholar 

  • P.B. Dengis, L.R. Nellissen, and P.G. Rouxhet, Applied and Environmental Microbiology 61, 718–728 (1995).

    Google Scholar 

  • E.H. van Hamersveld, R.G.J.M. van der Lans, and K.C.A.M. Luyben, Biotechnology and Bioengineering 56, 190–200 (1997).

    Article  Google Scholar 

  • K. Husimi, S. Ohkawa, C. Kim, S. Osada, and F. Shiraishi, Nuclear Instruments and Methods 196, 131–136 (1982).

    Article  Google Scholar 

  • A. Katz and R.R. Alfano, Proceedings of SPIE 3931, 223–226 (2000).

    Google Scholar 

  • D. Libkind, P. Perez, R. Sommarunga, M.C. Dieguez, M. Ferraro, S. Brizzio, H. Zagarese, and M. van Broock, Photochemical & Photobiological Science 3, 281–286 (2004).

    Article  Google Scholar 

  • S. Martic, J. Campbell, M. Bercu C. Atik, and M. Scarlet, Canadian Journal of Analytical Science and Spectroscopy 48, 1–8 (2003).

    Google Scholar 

  • J.M. Meinders, H.C. van der Mei, and H.J. Busscher, Journal of Colloid and Interface Science 176, 329–341 (1995).

    Article  Google Scholar 

  • P.N. Prasad, Introduction to Biophotonics, Willey Interscience 2003.

  • C. Ruggiero, M. Mantelli, and A. Curtis, European Cells and Materials 4 (Suppl.2), 115–117 (2002).

    Google Scholar 

  • M.H. Straver, P.C.V.D. Aar, G. Smit, and J.W. Kijne, Yeast 9, 527–532 (1993).

    Article  Google Scholar 

  • A. Touhami, B. Hofmann, A. Vasella, F. Denis, and Y. Dufrene, Langmuir 19, 1745–1751 (2003).

    Article  Google Scholar 

  • P.S. Tuminello, E.T. Arakawa, B.N. Khare, J.M. Wrobel, M.R. Querry and M.E. Milham, Applied Optics 36, (no.13), 2828–2824 (1997).

    Article  Google Scholar 

  • J. Vitte, A.M. Benoliel, A. Pieres and P. Bongrand, European Cells and Materials 7, 52–63 (2004).

    Google Scholar 

  • D. S. Yaney, J.T. Nelson, and L.L. Vanskike, IEEE Transactions On Electron Devices ED-26, 10–16 (1979).

    Google Scholar 

  • C. F. Williamson, J. R. Boujot, J. Picard, in “Silicon Surface-Barrier and Ion Implanted Detectors for Charged Particles”, Ortec Incorporated, Oak Ridge TN, (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Poenar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bercu, M., Zhou, X., Lee, A.C. et al. Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor. Biomed Microdevices 8, 177–185 (2006). https://doi.org/10.1007/s10544-006-7713-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-7713-7

Keywords

Navigation