Skip to main content
Log in

Exploring the role of impedance spectroscopy in assessing 405 nm laser-induced inactivation of saccharomyces cerevisiae

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Impedance spectroscopy was employed to assess the electrical properties of yeast following 405 nm laser irradiation, exploring the effects of visible, non-ionizing laser-induced inactivation as a more selective and safer alternative for photoinactivation applications compared to the use of DNA targeting, ionizing UV light. Capacitance and impedance spectra were obtained for yeast suspensions irradiated for 10, 20, 30, and 40 min using 100 and 200 mW laser powers. Noticeable differences in capacitance spectra were observed at lower frequencies (40 Hz to 1 kHz), with a significant increase at 40 min for both laser powers. β-dispersion was evident in the impedance spectra in the frequency range of 10 kHz to 10 MHz. The characteristic frequency of dielectric relaxation steadily shifted to higher frequencies with increasing irradiation time, with a drastic change observed at 40 min for both laser powers. These changes signify a distinct alteration in the physical state of yeast. A yeast spot assay demonstrated a decrease in cell viability with increasing laser irradiation dose. The results indicate a correlation between changes in electrical properties, cell viability, and the efficacy of 405 nm laser-induced inactivation. Impedance spectroscopy is shown to be an efficient, non-destructive, label-free method for monitoring changes in cell viability in photobiological effect studies. The development of impedance spectroscopy-based real-time studies in photoinactivation holds promise for advancing our understanding of light-cell interactions in medical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets collected and analysed in this study are available from the corresponding authors on reasonable request.

References

  1. Rastogi, R. P., Kumar, R. A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair. J Nucleic Acids. https://doi.org/10.4061/2010/592980

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maclean, M., et al. (2020). Non-ionizing 405 nm Light as a Potential Bactericidal Technology for Platelet Safety: Evaluation of in vitro Bacterial Inactivation and in vivo Platelet Recovery in Severe Combined Immunodeficient Mice”. Front Med (Lausanne). https://doi.org/10.3389/fmed.2019.00331

    Article  PubMed  Google Scholar 

  3. Masson-Meyers, D. S., Bumah, V. V., Biener, G., Raicu, V., & Enwemeka, C. S. (2015). The relative antimicrobial effect of blue 405 nm LED and blue 405 nm laser on methicillin-resistant Staphylococcus aureus in vitro. Lasers in Medical Science, 30(9), 2265–2271. https://doi.org/10.1007/s10103-015-1799-1

    Article  PubMed  Google Scholar 

  4. Murdoch, L. E., McKenzie, K., Maclean, M., MacGregor, S. J., & Anderson, J. G. (2013). Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biology, 117(7), 519–527. https://doi.org/10.1016/j.funbio.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  5. Ramakrishnan, P., Maclean, M., MacGregor, S. J., Anderson, J. G., & Grant, M. H. (2014). Differential sensitivity of osteoblasts and bacterial pathogens to 405-nm light highlighting potential for decontamination applications in orthopedic surgery. Journal of Biomedial Optics. https://doi.org/10.1117/1.JBO.19.10.105001

    Article  Google Scholar 

  6. Maknuna, L., Tran, V. N., Lee, B.-I., & Kang, H. W. (2023). Inhibitory effect of 405 nm laser light on bacterial biofilm in urethral stent. Science and Reports, 13, 3908. https://doi.org/10.1038/s41598-023-30280-0

    Article  CAS  Google Scholar 

  7. “Pulsed-light system as a novel food decontamination technology: a review.” Accessed: May 23, 2023. [Online]. Available: https://cdnsciencepub.com/doi/abs/https://doi.org/10.1139/w07-042

  8. Serrage, H., et al. (2019). Under the spotlight: Mechanisms of photobiomodulation concentrating on blue and green light. Photochemical & Photobiological Sciences, 18(8), 1877–1909. https://doi.org/10.1039/C9PP00089E

    Article  CAS  Google Scholar 

  9. Nakashima, Y., Ohta, S., & Wolf, A. M. (2017). Blue light-induced oxidative stress in live skin. Free Radical Biology and Medicine, 108, 300–310. https://doi.org/10.1016/j.freeradbiomed.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  10. Patel, P. M., Bhat, A., & Markx, G. H. (2008). A comparative study of cell death using electrical capacitance measurements and dielectrophoresis. Enzyme and Microbial Technology, 43, 523–530. https://doi.org/10.1016/j.enzmictec.2008.09.006

    Article  CAS  Google Scholar 

  11. Yardley, J. E., Kell, D. B., Barrett, J., & Davey, C. L. (2000). On-Line, Real-Time Measurements of Cellular Biomass using Dielectric Spectroscopy. Biotechnology and Genetic Engineering Reviews, 17(1), 3–36. https://doi.org/10.1080/02648725.2000.10647986

    Article  CAS  PubMed  Google Scholar 

  12. Bürgel, S. C., Escobedo, C., Haandbæk, N., & Hierlemann, A. (2015). On-chip electroporation and impedance spectroscopy of single-cells. Sensors and Actuators B: Chemical, 210, 82–90. https://doi.org/10.1016/j.snb.2014.12.016

    Article  CAS  Google Scholar 

  13. Han, A., Yang, L., & Frazier, A. B. (2007). Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clinical Cancer Research, 13(1), 139–143. https://doi.org/10.1158/1078-0432.CCR-06-1346

    Article  PubMed  Google Scholar 

  14. Justice, C., et al. (2011). Process control in cell culture technology using dielectric spectroscopy. Biotechnology Advances, 29, 391–401. https://doi.org/10.1016/j.biotechadv.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  15. Soley, A., et al. (2005). On-line monitoring of yeast cell growth by impedance spectroscopy. Journal of Biotechnology, 118(4), 398–405. https://doi.org/10.1016/j.jbiotec.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  16. J. Yao, T. Kodera, A. Sapkota, H. Obara, and M. Takei (2014) Experimental study on dielectric properties of yeast cells in micro channel by impedance spectroscopy, in 2014 International Symposium on Micro-NanoMechatronics and Human Science (MHS), pp. 1–4. doi: https://doi.org/10.1109/MHS.2014.7006168.

  17. Guyot, S., Ferret, E., & Gervais, P. (2005). Responses of Saccharomyces cerevisiae to thermal stress. Biotechnology and Bioengineering, 92(4), 403–409. https://doi.org/10.1002/bit.20600

    Article  CAS  PubMed  Google Scholar 

  18. Wang, L., et al. (2020). A hybrid Genetic Algorithm and Levenberg–Marquardt (GA–LM) method for cell suspension measurement with electrical impedance spectroscopy. Review of Scientific Instruments. https://doi.org/10.1063/5.0029491

    Article  PubMed  Google Scholar 

  19. Bot, C., & Prodan, C. (2009). Probing the membrane potential of living cells by dielectric spectroscopy. European Biophysics Journal, 38(8), 1049–1059. https://doi.org/10.1007/s00249-009-0507-0

    Article  PubMed  Google Scholar 

  20. Yao, J., Sapkota, A., Konno, H., Obara, H., Sugawara, M., & Takei, M. (2016). Noninvasive online measurement of particle size and concentration in liquid–particle mixture by estimating equivalent circuit of electrical double layer. Particulate Science and Technology, 34(5), 517–525. https://doi.org/10.1080/02726351.2015.1089345

    Article  CAS  Google Scholar 

  21. Kim, Y.-H., Park, J.-S., & Jung, H.-I. (2009). An impedimetric biosensor for real-time monitoring of bacterial growth in a microbial fermentor. Sensors and Actuators B: Chemical, 138(1), 270–277. https://doi.org/10.1016/j.snb.2009.01.034

    Article  CAS  Google Scholar 

  22. Al Ahmad, M., Al Natour, Z., Mustafa, F., & Rizvi, T. (2018). Electrical Characterization of Normal and Cancer Cells. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2830883

    Article  Google Scholar 

  23. H. P. Schwan (1957) Electrical Properties of Tissue and Cell Suspensions,” in Advances in Biological and Medical Physics vol. 5, Elsevier 147–209. doi: https://doi.org/10.1016/B978-1-4832-3111-2.50008-0.

  24. Slouka, C., et al. (2017). Low-Frequency Electrochemical Impedance Spectroscopy as a Monitoring Tool for Yeast Growth in Industrial Brewing Processes. Chemosensors. https://doi.org/10.3390/chemosensors5030024

    Article  Google Scholar 

  25. C. L. Davey (2023) The Biomass Monitor Source Book. Science Park, Aberystwyth: Aber Instruments, 1993. Accessed: May 22. [Online]. Available: http://hdl.handle.net/2160/39410

  26. Mei, B.-A., Munteshari, O., Lau, J., Dunn, B., & Pilon, L. (2018). Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. Journal of Physical Chemistry C, 122(1), 194–206. https://doi.org/10.1021/acs.jpcc.7b10582

    Article  CAS  Google Scholar 

  27. Wolf, M., Gulich, R., Lunkenheimer, P., & Loidl, A. (2012). Relaxation dynamics of a protein solution investigated by dielectric spectroscopy. Biochimica Biophysica Acta Proteins and Proteomics. https://doi.org/10.1016/j.bbapap.2012.02.008

    Article  Google Scholar 

  28. Afshar, S., et al. (2021). Full Beta-Dispersion Region Dielectric Spectra and Dielectric Models of Viable and Non-Viable CHO Cells. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 5(1), 70–77. https://doi.org/10.1109/JERM.2020.3014062

    Article  Google Scholar 

  29. Cole, H. E., Demont, A., & Marison, I. W. (2015). The Application of Dielectric Spectroscopy and Biocalorimetry for the Monitoring of Biomass in Immobilized Mammalian Cell Cultures. Processes. https://doi.org/10.3390/pr3020384

    Article  Google Scholar 

  30. Maclean, M., MacGregor, S. J., Anderson, J. G., & Woolsey, G. A. (2008). The role of oxygen in the visible-light inactivation of Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 92(3), 180–184. https://doi.org/10.1016/j.jphotobiol.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  31. Souza, S. O., et al. (2022). Photoinactivation of Yeast and Biofilm Communities of Candida albicans Mediated by ZnTnHex-2-PyP4+ Porphyrin. J Fungi (Basel), 8(6), 556. https://doi.org/10.3390/jof8060556

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Higher Education Malaysia under Fundamental Research Grant Scheme with Project Code: FRGS/1/2021/STG07/USM/02/5. This study was also supported by Universiti Sains Malaysia RU Top-Down grant (1001/CIPPM/870038). We greatly appreciate the valuable collaboration between the School of Physics and Institute for Research in Molecular Medicine (INFORMM) in this research.

Author information

Authors and Affiliations

Authors

Contributions

NS, EBBO and SNHK contributed to the study conception and design. Material preparation, data collection and analysis were performed by SNHK, JHF, and ABJ. The manuscript was written by ABJ and reviewed and edited by NS and EBBO.

Corresponding authors

Correspondence to Nursakinah Suardi or Eugene Boon Beng Ong.

Ethics declarations

Conflict of interests

The authors declare no competing financial interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ang, B.J., Suardi, N., Ong, E.B.B. et al. Exploring the role of impedance spectroscopy in assessing 405 nm laser-induced inactivation of saccharomyces cerevisiae. Photochem Photobiol Sci (2024). https://doi.org/10.1007/s43630-024-00564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43630-024-00564-z

Keywords

Navigation