Skip to main content
Log in

Development of a Disposable Infusion System for the Delivery of Protein Therapeutics

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper describes the development and optimization of a low flow open-loop infusion device for continuous delivery of protein therapeutics. Specifically, a non-electronic polymer device is actuated with responsive hydrogels to infuse at 2 μL/hr for 12 hours. Hydrogel actuators transduce a chemical signal (change in pH of the local environment) into a mechanical response (swelling) generating the pressure to drive the infusion. The hydrogel actuators are separated from the drug reservoir by an elastomeric impermeable membrane. As the hydrogel actuators expand, the expansion deflects the flexible membrane down and reduces the volume of the drug reservoir causing the infusion of drug through the needle that is the only outlet for the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B. Amsden, Macromolecules 31, 8382–8395 (1998).

    Article  Google Scholar 

  • A. Baldi, Y. Gu, P.E. Loftness, R.A. Siegel and B. Ziaie, Journal of Microelectromechanical Systems 12, 613–621 (2003).

    Article  Google Scholar 

  • M.J. Bassetti and D.J. Beebe, Micro Total Analysis Systems 2002, Kluwer Acedemic Publishers (Nara, Japan, 2002).

    Google Scholar 

  • J.M. Bauer, Fabrication and analysis of microscale hydrogels and polymers. Urbana, University of Illinois at Urbana-Champaign 163, (2002).

  • D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, and B.H. Jo, Nature 404, 588–590 (2000).

    Article  PubMed  Google Scholar 

  • M. Burns, B. Johnson, S. Brahmasandra, K. Handique, J. Webster, M. Krishnan, T. Sammarco, P. Man, D. Jones, D. Heldsinger, C. Mastrangelo, and D. Burke, Science 282, 484–487 (1998).

    Article  PubMed  Google Scholar 

  • X. Cao, S. Lai, and L.J. Lee, Biomedical Microdevices 3, 109–118 (2001).

    Article  Google Scholar 

  • S.K. De, N.R. Aluru, B. Johnson, W.C. Crone, D.J. Beebe, and J. Moore, Journal of Microelectromechanical Systems 11, 544–555 (2002).

    Article  Google Scholar 

  • D.T. Eddington and D.J. Beebe, Journal of Microelectromechanical Systems 13, 586–593 (2004).

    Article  Google Scholar 

  • D.T. Eddington, R.H. Liu, D.J. Beebe, and J.S. Moore, Lab on a Chip 1, 96–99 (2001).

    Article  PubMed  Google Scholar 

  • P. Griss and G. Stemme, Micro Electro Mechanical Systems, IEEE (Pisacathaway, NJ, 2002).

    Google Scholar 

  • Y. Gu, A. Baldi, B. Ziaie, and R.A. Siegel, 2nd International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Madison, WI USA, IEEE (2002).

  • Y.D. Gu and R.A. Siegl, International Symposium on Controlled Release Bioactive Materials (2001).

  • A. Guiseppi-Elie, S.I. Brahim, and D. Narinesingh, Advanced Materials 14, 743–746 (2002).

    Article  Google Scholar 

  • J. Hoffman, M. Plotner, D. Kuckling, and W. Fischer, Sensors and Actuators B 77, 139–144 (1999).

    Article  Google Scholar 

  • B. Johnson, J.M. Bauer, D.J. Niedermaier, W.C. Crone, and D.J. Beebe, Experimental Mechanics 44, 21–28 (2004).

    Article  Google Scholar 

  • D.Y. Jung, J.J. Magda, and I.S. Han, Macromolecules 33, 3332–3336 (2000).

    Article  Google Scholar 

  • K. Kataoka, H. Miyazaki, M. Bunya, T. Okano, and Y. Sakurai, Journal of the American Chemical Society 120, 12694–12695 (1998).

    Article  Google Scholar 

  • N. Kato, F. Takahashi, and S. Yamanobe, Material Science and Engineering C: Biomemetric Materials, Sensors and Systems C5, 141–147 (1997).

    Google Scholar 

  • H.C. Kim, Y.H. Bae, and S.W. Kim, IEEE Transactions on Biomedical Engineering, 46, 663–669 (1999).

    Article  PubMed  Google Scholar 

  • M.U. Kopp, A.J. deMello, and A. Manz, Science 280, 1046–1049 (1998).

    Article  PubMed  Google Scholar 

  • W. Kuhn, B. Hargitay, A. Katchalsky, and H. Eisenberg, Nature 165, 514–516 (1950).

    Google Scholar 

  • L. Lin and A.P. Pisano, Journal of Microelectromechanical Systems 8, 78–84 (1999).

    Article  Google Scholar 

  • F.J. Martin and C. Grove, Biomedical Microdevices 3, 97–108 (2001).

    Article  Google Scholar 

  • T. Miyata, N. Asami, and T. Uragami, Nature 399, 766–796 (1999).

    Article  PubMed  Google Scholar 

  • T. Miyata, A. Jikihara, and K. Nakamae, Macromolecular Chemistry and Physics 197, 1135–1146 (1996).

    Article  Google Scholar 

  • D. Nidegger, S. Ragot, P. Berthelemy, C. Masliah, C. Pilette, T. Martin, A. Bianchi, T. Paupard, C. Silvain, and M. Beauchant, Journal of Hepatology 39, 509–514 (2003).

    Article  PubMed  Google Scholar 

  • K. Ogawa, T. Nakajima-Kambe, T. Nakahara, and E. Kokufuta, Biomacromolecules 3, 625–631 (2002).

    Article  PubMed  Google Scholar 

  • R.B. Parekh and C. Rohlff, Current Opinion in Biotechnology 8, 719–723 (1997).

    Article  Google Scholar 

  • P. Parmpi and P. Kofinas, Biomaterials 25, 1969–1973 (2004).

    Article  PubMed  Google Scholar 

  • Z. Ronai, C. Barta, M. Sasvari-Szekely, and A. Guttman, Electrophoresis 22, 294–299 (2001).

    Article  PubMed  Google Scholar 

  • H.M. Simms, C.M. Brotherton, B.T. Good, R.H. Davis, K.S. Anseth, and C.N. Bowman, Lab on a Chip 5, 151–157 (2005).

    Article  PubMed  Google Scholar 

  • K.S. Soppimath, T.M. Aminabhavi, A.M. Dave, S.G. Kumbar, and W.E. Rudzinski, Drug Development and Industrial Pharmacy 28, 957–974 (2002).

    Article  PubMed  Google Scholar 

  • Y.C. Su, L.W. Lin, and A.P. Pisano, Journal of Microelectromechanical Systems, 11, 736–742 (2002).

    Article  Google Scholar 

  • K.D. Sudipto, N.R. Aluru, B. Johnson, W.C. Crone, D.J. Beebe and J.S. Moore, Journal of Microelectromechanical Systems 11, 544–555 (2002).

    Article  Google Scholar 

  • A. Suzuki and T. Tanaka, Nature 346, 345–347 (1990).

    Article  Google Scholar 

  • T. Tanaka, D. Fillmore, S. Sun, I. Nishio, G. Swislow, and A. Shah, Physical Review Letters 45, 1636–1639 (1980).

    Article  Google Scholar 

  • Z. Weng and C. DeLisi, Trends in Biotechnology 20, 29–35 (2002).

    Article  PubMed  Google Scholar 

  • A.T. Wooley and R.A. Mathies, Proceedings of the National Academy of Science 1994, 11348–11352 (1994).

  • J.D. Zahn, N.H. Talbot, D. Liepmann, and A.P. Pisano, Biomedical Microdevices 2, 295–303 (2000).

    Article  Google Scholar 

  • M.A. Zwieniecki, P.J. Melcher, and N.M. Holbrook, Journal of Experimental Botany 52, 257–264 (2001a).

    Article  Google Scholar 

  • M.A. Zwieniecki, P.J. Melcher, and N.M. Holbrook, Science 291, 1059–1062 (2001b).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eddington, D.T., Beebe, D.J. Development of a Disposable Infusion System for the Delivery of Protein Therapeutics. Biomed Microdevices 7, 223–230 (2005). https://doi.org/10.1007/s10544-005-3029-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-3029-2

Keywords

Navigation