Skip to main content
Log in

Modified equations for weakly convergent stochastic symplectic schemes via their generating functions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, an approach of constructing modified equations of weak \(k+k'\) order (\(k'\ge 1\)) apart from the k-th order weakly convergent stochastic symplectic methods, i.e., stochastic symplectic methods with respect to weak convergence and of weak order k, is given using the underlying generating functions of them. This approach is valid for stochastic Hamiltonian systems with additive noises, and those with multiplicative noises but for which the Hamiltonian functions \(H_r(p,q),\,\,r\ge 1\) associated to the diffusion parts depend only on p or only on q. In such cases, we find that the modified equations of the weakly convergent stochastic symplectic methods are perturbed stochastic Hamiltonian systems of the original systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdulle, A., Cohen, D., Vilmart, G., Zygalakis, K.C.: High weak order methods for stochastic differential equations based on modified equations. SIAM J. Sci. Comput. 34(3), 1800–1823 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle, A., Vilmart, G., Zygalakis, K.C.: Long time accuracy of Lie–Trotter splitting methods for Langevin dynamics. SIAM J. Numer. Anal. 53(1), 1–16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anton, C.A., Wong, Y.S., Deng, J.: Symplectic schemes for stochastic Hamiltonian systems preserving Hamiltonian functions. Int. J. Numer. Anal. Model. 1(1), 1–18 (2013)

    MATH  Google Scholar 

  4. Anton, C.A., Deng, J., Wong, Y.S.: Weak symplectic schemes for stochastic Hamiltonian equations. Electron. Trans. Numer. Anal. 43, 1–20 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Benettin, G., Giorgilli, A.: On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys. 74, 1117–1143 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Debussche, A., Faou, E.: Weak backward error analysis for SDEs. SIAM J. Numer. Anal. 50(3), 1735–1752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, J., Anton, C.A., Wong, Y.S.: High-order symplectic schemes for stochastic Hamiltonian systems. Commun. Comput. Phys. 16(1), 169–200 (2014)

    Article  MathSciNet  Google Scholar 

  8. Eirola, T.: Aspects of backward error analysis of numerical ODE’s. J. Comput. Appl. Math. 45, 65–73 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, K.: Formal power series and numerical algorithms for dynamical systems. In: Chan, T., Shi, Z.-C. (eds.) Proceedings of International Conference on Scientific Computation, Hangzhou China, Appl. Math. vol. 1, pp. 28–35 (1991)

  10. Feng, K., Wu, H.M., Qin, M.Z., Wang, D.L.: Construction of canonical difference schemes for Hamiltonian formalism via generating functions. J. Comput. Math. 7, 71–96 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Fiedler, B., Scheurle, J.: Discretization of homoclinic orbits, rapid forcing and “invisible” chaos. Mem. Am. Math. Soc. 119(570), (1996)

  12. Griffiths, D.F., Sanz-Serna, J.M.: On the scope of the method of modified equations. SIAM J. Sci. Stat. Comput. 7, 994–1008 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  14. Hairer, E., Lubich, C.: The life-span of backward error analysis for numerical integrators. Numer. Math. 76, 441–462 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong, J.L., Scherer, R., Wang, L.J.: Midpoint rule for a linear stochastic oscillator with additive noise. Neural Parallel Sci. Comput. 14, 1–12 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  17. Leimkuhler, B., Reich, S.: Simulating Hamiltonian dynamics. In: Cambridge Monographs on Applied and Computational mathematics, vol. 14. Cambridge University Press, Cambridge (2004)

  18. Mao, X.R.: Stochastic Differential Equations and Applications, 2nd edn. Horwood Publishing Limited, Chichester (2007)

    MATH  Google Scholar 

  19. Milstein, G.N., Repin, Y.M., Tretyakov, M.V.: Symplectic integration of Hamiltonian systems with additive noise. SIAM J. Numer. Anal. 39, 2066–2088 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milstein, G.N., Repin, Y.M., Tretyakov, M.V.: Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal. 40, 1583–1604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  22. Moser, J.: Lectures on Hamiltonian systems. Mem. Am. Math. Soc. 81, 1–60 (1968)

    MathSciNet  MATH  Google Scholar 

  23. Murua, A.: Métodos simplécticos desarrollables en P-series. Doctoral Thesis, University Valladolid (1994)

  24. Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  25. Pavliotis, G.A., Stuart, A.M., Zygalakis, K.C.: Calculating effective diffusivities in the limit of vanishing molecular diffusion. J. Comput. Phys. 4(228), 1030–1055 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reich, S.: Backward error analysis for numerical integrators. SIAM J. Numer. Anal. 36, 1549–1570 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems. In: Applied Mathematics and Mathematical Computation, vol. 7. Chapman & Hall, London (1994)

  28. Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian problems: an overview. Acta Numer. 1, 243–286 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shardlow, T.: Modified equations for stochastic differential equations. BIT 46(1), 111–125 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Strømmen Melbø A.H., Higham, D.J.: Numerical simulation of a linear stochastic oscillator with additive noise. Appl. Numer. Math. 51(1), 89–99 (2004)

  31. Tang, Y.F.: Formal energy of a symplectic scheme for Hamitonian systems and its applications (I). Comput. Math. Appl. 27, 31–39 (1994)

    Google Scholar 

  32. Wang, L.J.: Variational integrators and generating functions for stochastic Hamiltonian systems. Ph.D thesis, Karlsruhe Institute of Technology, KIT Scientific Publishing (2007)

  33. Wang, L.J., Hong, J.L.: Generating functions for stochastic symplectic methods. Discrete Cont. Dyn. Syst. 34(3), 1211–1228 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, W., Skeel, R.D.: Analysis of a few numerical integration methods for the Langevin equation. Mol. Phys. 101, 2149–2156 (2003)

    Article  Google Scholar 

  35. Yoshida, H.: Recent progress in the theory and application of symplectic integrators. Celest. Mech. Dyn. Astronom. 56, 27–43 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zygalakis, K.C.: On the existence and applications of modified equations for stochastic differential equations. SIAM J Sci. Comput. 33(1), 102–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author is supported by the NNSFC No. 11071251, No. 11471310, and by the 2013 Director Foundation of UCAS. The second author is supported by the NNSFC No. 91130003, No. 11021101, No. 11290142. The authors are grateful for the valuable suggestions from the editor, the referees and Prof. M.V. Tretyakov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijin Wang.

Additional information

Communicated by David Cohen.

Appendices

Appendix 1: An illustrating explanation regarding influence of the approximation error of \(\bar{I}_{\alpha }^h\)

For example, given a two-dimensional (\(d=2\)) stochastic Hamiltonian system with additive noise, or the \(H_r(p,q),\,\,r\ge 1\) depend only on p or only on q, and its symplectic scheme of weak order 1, i.e. \(k=1\). Suppose the generating function of the scheme is

$$\begin{aligned} S^1(P,q,h)=\mathop {\mathop {\sum }\limits _{\alpha }}\limits _{l(\alpha )\le 1}\left( \sum _{\beta }C_{\alpha }^{\beta }G_{\beta }^1(P,q)\right) \bar{I}_{\alpha }^h, \end{aligned}$$

and the generating function for the modified equation of the numerical scheme is

$$\begin{aligned} \tilde{S}^1(\tilde{P},q,h)=\sum _{\alpha }\left( \sum _{\beta }C_{\alpha }^{\beta }\bar{G}_{\beta }^1(\tilde{P},q)\right) I_{\alpha }^h, \end{aligned}$$

where, for convenience of comparison, we have transformed the \(J_{\beta }^h\) in \(\tilde{S}^1\) into combination of some \(I_{\alpha }^h\) according to (4.16). By definition of \(\bar{G}_{\beta }^1\) given in (4.11), we have

$$\begin{aligned} \bar{G}_{\beta }^1(\tilde{P},q)=G_{\beta }^1(\tilde{P},q)+M_{\beta }^1(\tilde{P},q), \end{aligned}$$

where \(M_{\beta }^1(\tilde{P},q)\) denote all the other terms except for the first term \(G_{\beta }^1(\tilde{P},q)\) in \(\bar{G}_{\beta }^1(\tilde{P},q)\). A straightforward calculation gives

$$\begin{aligned} \mathbf {E}\left( \frac{\partial S^1}{\partial q}\right) ^2-\mathbf {E}\left( \frac{\partial \tilde{S}^1}{\partial q}\right) ^2=\mathbf {E}(\triangle _1^2)-\mathbf {E}(\triangle _2+\triangle _3)^2, \end{aligned}$$

where

$$\begin{aligned} \triangle _1= & {} \frac{\partial }{\partial q}\left[ (G_{(0)}^1+\frac{1}{2}G_{(1,1)}^1)h+G_{(1)}^1\bar{\xi }\sqrt{h}\right] \\ \triangle _2= & {} \frac{\partial }{\partial q}\left[ (G_{(0)}^{1[0]}+\frac{1}{2}G_{(1,1)}^{1[0]})h+G_{(1)}^{1[0]}\xi \sqrt{h}\right] \\ \triangle _3= & {} \frac{\partial }{\partial q}\left[ G_{(1,1)}^{1[0]}I_{(1,1)}+(G_{(1,0)}^{1[0]}+H_{1}^{[1]})I_{(1,0)}\right. \\&\left. +(G_{(0,1)}^{1[0]}+H_{1}^{[1]})I_{(0,1)} +G_{(1,1,1)}^{1[0]}I_{(1,1,1)}+\cdots \right] \end{aligned}$$

with all the appearing \(G_{\alpha }^1\) taking values at (Pq), and the functions coming from \(\bar{G}_{\alpha }^1\) taking values at \((\tilde{P},q)\). Thus,

$$\begin{aligned} \mathbf {E}\left( \frac{\partial S^1}{\partial q}\right) ^2-\mathbf {E}\left( \frac{\partial \tilde{S}^1}{\partial q}\right) ^2=\mathbf {E}(\triangle _1^2)-\mathbf {E}(\triangle _2^2)-\mathbf {E}(\triangle _3^2)-2\mathbf {E}(\triangle _2\triangle _3). \end{aligned}$$

Performing Taylor expansion of \(G_{\alpha }^1(P,q)\) and those functions from \(\bar{G}_{\alpha }^1(\tilde{P},q)\) at (pq), we get

$$\begin{aligned}&\mathbf {E}(\triangle _1^2)-\mathbf {E}(\triangle _2^2)=h\left[ \frac{\partial G_{(1)}^1}{\partial q}(p,q)\right] ^2\mathbf {E}(\bar{\xi }^2-\xi ^2)\\&\quad +h^2\left[ \varPsi _1\left( \mathbf {E}(\bar{\xi }^2-\xi ^2),\mathbf {E}(\bar{\xi }^4-\xi ^4),\ldots ,\mathbf {E}(\bar{\xi }^{2(k+k')}-\xi ^{2(k+k')})\right) \right] \\&\quad +h^2\left[ \varPsi _2\left( \frac{\partial H_{(1)}^{[1]}}{\partial q}(p,q),\frac{\partial H_{(0)}^{[1]}}{\partial q}(p,q),\frac{\partial H_{(1)}^{[2]}}{\partial q}(p,q),\frac{\partial H_{(0)}^{[2]}}{\partial q}(p,q),\ldots \right) \right] , \end{aligned}$$

where [20]

$$\begin{aligned} \bar{\xi }=\left\{ \begin{array}{ll}-A_h,&{}\xi <-A_h,\\ \xi ,&{}|\xi |\le A_h,\\ A_h,&{}\xi > A_h,\end{array}\right. \end{aligned}$$

with \(\xi \sim \mathscr {N}(0,1)\) and \(A_h=\sqrt{2\mu \ln |h|}\) with \(\mu \ge 1\). \(\varPsi _1\) is a linear function of \(\mathbf {E}(\bar{\xi }^{2l}-\xi ^{2l})\) \((1\le l\le k+k')\), and \(\varPsi _2\) is a function of partial derivatives of the unknown functions \(H_j^{[i]}\). Then,

$$\begin{aligned} \begin{aligned}&\mathbf {E}\left( \frac{\partial S^1}{\partial q}\right) ^2-\mathbf {E}\left( \frac{\partial \tilde{S}^1}{\partial q}\right) ^2\\&\quad =\left[ \left( \frac{\partial G_{(1)}^1}{\partial q}(p,q)\right) ^2\mathbf {E}(\bar{\xi }^2-\xi ^2)h\right. \\&\qquad \left. +h^2\left( \varPsi _1\left( \mathbf {E}(\bar{\xi }^2-\xi ^2),\mathbf {E}(\bar{\xi }^4-\xi ^4),\ldots ,\mathbf {E}(\bar{\xi }^{2(k+k')}-\xi ^{2(k+k')})\right) \right) \right] \\&\qquad +\left[ h^2\left( \varPsi _2\left( \frac{\partial H_{(1)}^{[1]}}{\partial q},\frac{\partial H_{(0)}^{[1]}}{\partial q},\frac{\partial H_{(1)}^{[2]}}{\partial q},\frac{\partial H_{(0)}^{[2]}}{\partial q},\ldots \right) \right) -\mathbf {E}(\triangle _3^2)-2\mathbf {E}(\triangle _2\triangle _3)\right] \\&\quad :=F_1\left( \mathbf {E}(\bar{\xi }^2-\xi ^2),\mathbf {E}(\bar{\xi }^4-\xi ^4),\ldots ,\mathbf {E}(\bar{\xi }^{2(k+k')}-\xi ^{2(k+k')})\right) \\&\qquad +F_2\left( \frac{\partial H_{(1)}^{[1]}}{\partial q},\frac{\partial H_{(0)}^{[1]}}{\partial q},\frac{\partial H_{(1)}^{[2]}}{\partial q},\frac{\partial H_{(0)}^{[2]}}{\partial q},\ldots \right) , \end{aligned} \end{aligned}$$

where \(F_2\) is a function including partial derivatives of the unknown functions \(H_j^{[i]}\) but without \(\bar{\xi }\).

To make \(\left| \mathbf {E}\left( \frac{\partial S^1}{\partial q}\right) ^2-\mathbf {E}\left( \frac{\partial \tilde{S}^1}{\partial q}\right) ^2\right| \le O(h^{k+k'+1})\), we only need \(|F_1|\le O(h^{k+k'+1})\) which implies

$$\begin{aligned} \left\{ \begin{array}{l}\mathbf{{E}}[\bar{\xi }^{(2k+2k')}-{\xi }^{(2k+2k')}]\le O(h),\,\,\,\,\,\,\\ \mathbf{{E}}[\bar{\xi }^{(2k+2k'-2)}-{\xi }^{(2k+2k'-2)}]\le O(h^2),\,\,\,\,\,\,\\ \vdots \\ \mathbf{{E}}[\bar{\xi }^{2}-{\xi }^{2}]\le O(h^{(k+k')}),\,\,\,\,\,\,\end{array}\right. \end{aligned}$$

and \(|F_2|\le O(h^{k+k'+1})\), from which we can derive some partial derivatives of the unknown functions such as \(\frac{\partial H_j^{[i]}}{\partial q}\) for some i and j. Similar to the analysis in [20], we can derive that \(\mu \ge k+k'+1\) solves the group of inequalities above. In other words, as long as we choose \(\mu \ge k+k'+1\) in the approximation \(\bar{I}_1^h=\bar{\xi }\sqrt{h}\) in which \(\bar{\xi }\) has a boundary containing the parameter \(\mu \), the approximation error totally contained in \(|F_1|\) will be merged into the desired error order of the modified equation \(O(h^{k+k'+1})\), and it will not affect the determination of the unknown functions \(H_j^{[i]}\) which are all included in the other term \(F_2\).

It can be derived similarly that, to guarantee the weakly convergent order k of the numerical method not being affected by the truncation of the random variable, one needs to choose \(\mu \ge k+1\). Therefore, considering both the matching between the numerical method and its modified equation, and the weakly convergent order of the numerical method, we choose \(\mu \ge \max \{k+k'+1,k+1\}=k+k'+1\).

As long as the approximation error \(\bar{I}_{\alpha }^h\) can be at last due to truncations of the Gaussian random variables, it can be merged into the desired error order of the modified equations via choosing sufficiently large values of \(\mu \), similar to the analysis given by Milstein, Repin and Tretyakov, which implies the possibility of adapting the truncation method to constructing implicit schemes of arbitrary desired root mean-square orders s by choosing sufficiently large \(\mu \ge 2s\) [20].

Appendix 2: Modified equation with \(k=1\) and \(k'=2\)

Here we derive the modified equation that is globally weakly 2 order closer to the numerical method (5.5) than the true solution of the stochastic system (5.1) does, i.e. k=1, \(k'\)=2. We start by presenting the calculations for finding the functions \(\bar{G}_{\alpha }^{1}\) in addition to those in (5.6),

$$\begin{aligned}&\bar{G}_{(1,0,1)}^1=G_{(1,0,1)}^{1[0]}+G_{(1,1)}^{1[1]}=G_{(1,1)}^{1[1]},\\&\bar{G}_{(0,0,1)}^1=G_{(0,0,1)}^{1[0]}+2G_{(0,1)}^{1[1]}+2G_{(1)}^{1[2]}=-\sigma q+2G_{(0,1)}^{1[1]}+2H_1^{[2]},\\&\bar{G}_{(0,1,0)}^1=G_{(0,1,0)}^{1[0]}+G_{(0,1)}^{1[1]}+G_{(1,0)}^{1[1]}+2G_{(1)}^{1[2]}=-\sigma q+G_{(0,1)}^{1[1]}+G_{(1,0)}^{1[1]}+2H_1^{[2]},\\&\bar{G}_{(1,0,0)}^1=G_{(1,0,0)}^{1[0]}+2G_{(0,1)}^{1[1]}+2G_{(1)}^{1[2]}=2G_{(1,0)}^{1[1]}+2H_1^{[2]},\\&\bar{G}_{(0,1,1,1)}^1=G_{(0,1,1,1)}^{1[0]}+G_{(1,1,1)}^{1[1]}=G_{(1,1,1)}^{1[1]},\\&\bar{G}_{(1,0,1,1)}^1=G_{(1,0,1,1)}^{1[0]}+G_{(1,1,1)}^{1[1]}=G_{(1,1,1)}^{1[1]},\\&\bar{G}_{(1,1,0,1)}^1=G_{(1,1,0,1)}^{1[0]}+G_{(1,1,1)}^{1[1]}=G_{(1,1,1)}^{1[1]},\\&\bar{G}_{(1,1,1,0)}^1=G_{(1,1,1,0)}^{1[0]}+G_{(1,1,1)}^{1[1]}=G_{(1,1,1)}^{1[1]},\\&\bar{G}_{(0,0,0)}^1=G_{(0,0,0)}^{1[0]}+3G_{(0,0)}^{1[1]}+6G_{(0)}^{1[2]}={\tilde{P}}^{2}+q^2+3G_{(0,0)}^{1[1]}+6H_0^{[2]},\\&\bar{G}_{(1,1,1,1,0)}^1=\bar{G}_{(1,1,1,0,1)}^1=\bar{G}_{(1,1,0,1,1)}^1=\bar{G}_{(1,0,1,1,1)}^{1}=\bar{G}_{(0,1,1,1,1)}^{1}=G_{(1,1,1,1)}^{1[1]},\\&\bar{G}_{(0,0,1,1)}^1=G_{(0,0,1,1)}^{1[0]}+2G_{(0,1,1)}^{1[1]}+2G_{(1,1)}^{1[2]}=2G_{(0,1,1)}^{1[1]}+2G_{(1,1)}^{1[2]},\\&\bar{G}_{(0,1,0,1)}^1=G_{(0,1,0,1)}^{1[0]}+G_{(0,1,1)}^{1[1]}+G_{(1,0,1)}^{1[1]}+2G_{(1,1)}^{1[2]}=G_{(0,1,1)}^{1[1]}+G_{(1,0,1)}^{1[1]}+2G_{(1,1)}^{1[2]},\\&\bar{G}_{(0,1,1,0)}^1=G_{(0,1,1,0)}^{1[0]}+G_{(0,1,1)}^{1[1]}+G_{(1,1,0)}^{1[1]}+2G_{(1,1)}^{1[2]}=G_{(0,1,1)}^{1[1]}+G_{(1,1,0)}^{1[1]}+2G_{(1,1)}^{1[2]},\\&\bar{G}_{(1,1,0,0)}^1=G_{(1,1,0,0)}^{1[0]}+2G_{(1,1,0)}^{1[1]}+2G_{(1,1)}^{1[2]}=2G_{(1,1,0)}^{1[1]}+2G_{(1,1)}^{1[2]},\\&\bar{G}_{(1,0,1,0)}^1=G_{(1,0,1,0)}^{1[0]}+G_{(1,0,1)}^{1[1]}+G_{(1,1,0)}^{1[1]}+2G_{(1,1)}^{1[2]}=G_{(1,0,1)}^{1[1]}+G_{(1,1,0)}^{1[1]}+2G_{(1,1)}^{1[2]},\\&\bar{G}_{(1,0,0,1)}^1=G_{(1,0,0,1)}^{1[0]}+2G_{(1,0,1)}^{1[1]}+2G_{(1,1)}^{1[2]}=2G_{(1,0,1)}^{1[1]}+2G_{(1,1)}^{1[2]}.\\&\vdots \end{aligned}$$

Based on the functions \(\bar{G}_{\alpha }^{1}\) listed above, we can reattain the equations (5.7), (5.8), (5.9) and (5.10) when we compare coefficients of h and \(h^2\),

$$\begin{aligned} \begin{aligned}&\frac{1}{2}\sigma \frac{\partial ^2H_1^{[1]}}{\partial p\partial q}-\frac{\partial H_0^{[1]}}{\partial q}=\frac{1}{2}p,\quad \frac{1}{2}\sigma \frac{\partial ^2H_1^{[1]}}{\partial p^2}-\frac{\partial H_0^{[1]}}{\partial p} =\frac{1}{2}q,\\&\frac{\partial H_1^{[1]}}{\partial q}=0,\quad \frac{\partial H_1^{[1]}}{\partial p}=\frac{1}{2}\sigma . \end{aligned} \end{aligned}$$

Substituting (5.9) into (5.7) and (5.8), and comparing the coefficients of \(h^3\), we get the following

$$\begin{aligned}&\frac{\partial H_0^{[1]}}{\partial p}=-\frac{1}{2}q,\quad \frac{\partial H_0^{[1]}}{\partial q}=-\frac{1}{2}p,\\&G_{(1,1)}^{1[1]}=\frac{\partial H_1^{[1]}}{\partial q}\frac{\partial G_1^{[0]}}{\partial {\tilde{P}}}+\frac{\partial H_1^{[0]}}{\partial q}\frac{\partial G_1^{[1]}}{\partial {\tilde{P}}}=-\frac{1}{2}{\sigma }^2,\\&G_{(0,1)}^{1[1]}=\frac{\partial H_1^{[1]}}{\partial q}\frac{\partial G_0^{[0]}}{\partial {\tilde{P}}}+\frac{\partial H_1^{[0]}}{\partial q}\frac{\partial G_0^{[1]}}{\partial {\tilde{P}}}=\frac{1}{2}\sigma q,\\&G_{(1,0)}^{1[1]}=\frac{\partial H_0^{[1]}}{\partial q}\frac{\partial G_1^{[0]}}{\partial {\tilde{P}}}+\frac{\partial H_0^{[0]}}{\partial q}\frac{\partial G_1^{[1]}}{\partial {\tilde{P}}}=\frac{1}{2}\sigma q,\\&G_{(1,1,1)}^{1[1]}=0,\quad {\bar{G}}_{(0,0,1)}^1={\bar{G}}_{(0,1,0)}^1=2H_1^{[2]},\\&{\bar{G}}_{(1,0,0)}^1=\sigma q+2H_1^{[2]},\\&\frac{\partial H_1^{[2]}}{\partial p}=0,\quad \frac{\partial H_1^{[2]}}{\partial q}=-\frac{1}{6}\sigma ,\quad G_{(1,1,1,1)}^{1[1]}=0,\\&G_{(0,1,1)}^{1[1]}=G_{(1,0,1)}^{1[1]}=G_{(1,1,0)}^{1[1]}=G_{(1,1,1,1)}^{1[1]}=G_{(1,1)}^{1[2]}=0,\\&G_{(0,0)}^{1[1]}=\frac{\partial H_0^{[1]}}{\partial q}\frac{\partial G_0^{[0]}}{\partial {\tilde{P}}}+\frac{\partial H_0^{[0]}}{\partial q}\frac{\partial G_0^{[1]}}{\partial {\tilde{P}}}=-\frac{1}{2}({\tilde{P}}^2+q^2),\\&\bar{G}_{(0,0,0)}^1=-\frac{1}{2}({\tilde{P}}^{2}+q^2)+6H_0^{[2]},\\&\frac{\partial H_0^{[2]}}{\partial p}=\frac{1}{6}p,\quad \frac{\partial H_0^{[2]}}{\partial q}=\frac{1}{6}q. \end{aligned}$$

According to the definition of the modified equation in Theorem (4.1), the modified equation of weak third order apart from the numerical method (5.5) is

$$\begin{aligned} dp= & {} \left( -q+h\frac{p}{2}-h^2\frac{q}{6}\right) dt+ \left( \sigma +h^2\frac{\sigma }{6}\right) dW(t),\nonumber \\ dq= & {} \left( p-h\frac{q}{2}+h^2\frac{p}{6}\right) dt+h\frac{\sigma }{2} dW(t). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Hong, J. & Sun, L. Modified equations for weakly convergent stochastic symplectic schemes via their generating functions. Bit Numer Math 56, 1131–1162 (2016). https://doi.org/10.1007/s10543-015-0583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0583-8

Keywords

Mathematics Subject Classification

Navigation