Skip to main content
Log in

The BS class of Hermite spline quasi-interpolants on nonuniform knot distributions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The BS Hermite spline quasi-interpolation scheme is presented. It is related to the continuous extension of the BS linear multistep methods, a class of Boundary Value Methods for the solution of Ordinary Differential Equations. In the ODE context, using the numerical solution and the associated numerical derivative produced by the BS methods, it is possible to compute, with a local approach, a suitable spline with knots at the mesh points collocating the differential equation at the knots and having the same convergence order as the numerical solution. Starting from this spline, here we derive a new quasi-interpolation scheme having the function and the derivative values at the knots as input data. When the knot distribution is uniform or the degree is low, explicit formulas can be given for the coefficients of the new quasi-interpolant in the B-spline basis. In the general case these coefficients are obtained as solution of suitable local linear systems of size 2d×2d, where d is the degree of the spline. The approximation order of the presented scheme is optimal and the numerical results prove that its performances can be very good, in particular when suitable knot distributions are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach, New York (1998)

    Google Scholar 

  2. de Boor, C.: Splines as linear combinations of B-splines. In: Lorentz, G.G., (eds.) Approximation Theory II, pp. 1–47. Academic Press, San Diego (1976)

    Google Scholar 

  3. de Boor, C.: A Practical Guide to Splines, revised edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  4. de Boor, C., Fix, M.G.: Spline approximation by quasi-interpolants. J. Approx. Theory 8, 19–54 (1973)

    Article  MATH  Google Scholar 

  5. Gaffney, P.W., Powell, M.J.D.: Optimal interpolation, in numerical analysis. In: Proc. 6th Biennal Dundee Conf., Univ. Dundee, Dundee, 1975. Lecture Notes in Math., vol. 506, pp. 90–99. Springer, Berlin (1976)

    Google Scholar 

  6. Lee, B.G., Lyche, T., Mørken, K.: Some examples of quasi-interpolants constructed from local spline projectors. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 243–252. Vanderbilt University Press, Nashville (2001)

    Google Scholar 

  7. Lyche, T., Schumaker, L.L.: Local spline approximation. J. Approx. Theory 15, 294–325 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lyche, T., Morken, K.: Spline methods, Draft. Institute of Informatics, University of Oslo (2008)

  9. Mazzia, F., Pavani, R.: A class of symmetric methods for Hamiltonian systems. In: Carini, A., Piva, R. (eds.) Atti del XVIII Congresso dell’Associazione Italiana di Meccanica Teorica e Applicata, Brescia, 11–14 Settembre 2007. Starrylink, Brescia (2007)

    Google Scholar 

  10. Mazzia, F., Sestini, A., Trigiante, D.: B-spline multistep methods and their continuous extensions. SIAM J. Numer. Anal. 44(5), 1954–1973 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mazzia, F., Sestini, A., Trigiante, D.: BS linear multistep methods on non-uniform meshes. J. Numer. Anal. Ind. Appl. Math. 1, 131–144 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Mazzia, F., Sestini, A., Trigiante, D.: High order continuous approximation for the top order methods. In: Simos, E., Psihoyios, G., Tsitouras, C. (eds.) Numerical Analysis and Applied Mathematics, pp. 611–613. American Institute of Physics, Melville (2007)

    Google Scholar 

  13. Mazzia, F., Sestini, A., Trigiante, D.: The continous extension of the B-spline linear multistep methods for BVPs on non-uniform meshes. Appl. Numer. Meth. 59, 723–738 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Micchelli, C.A., Rivlin, T.J., Winograd, S.: The optimal recovery of smooth functions. Numer. Math. 26, 191–200 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sablonnière, P.: Positive spline operators and orthogonal splines. J. Approx. Theory 52, 28–42 (1988)

    Article  MathSciNet  Google Scholar 

  16. Sablonnière, P.: Recent progress on univariate and multivariate polynomial and spline quasi-interpolants. In: de Bruin, M.G., Mache, D.H., Szabados, J. (eds.) Trends and Applications in Constructive Approximation. International Series of Numerical Mathematics, vol. 151, pp. 229–245. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  17. Sablonnière, P.: Univariate spline quasi-interpolants and applications to numerical analysis. Rend. Semin. Mat. Univ. (Torino) 63(3), 211–222 (2005)

    MATH  Google Scholar 

  18. Sablonnière, P., Sbibih, D.: Integral spline operators exact on polynomials. Approx. Theory Appl. 10(3), 56–73 (1994)

    MATH  MathSciNet  Google Scholar 

  19. The Mathworks, Matlab release 2007b. http://www.mathworks.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Mazzia.

Additional information

Communicated by Tom Lyche.

Work developed within the project “Numerical methods and software for differential equations”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzia, F., Sestini, A. The BS class of Hermite spline quasi-interpolants on nonuniform knot distributions. Bit Numer Math 49, 611–628 (2009). https://doi.org/10.1007/s10543-009-0229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-009-0229-9

Keywords

Mathematics Subject Classification (2000)

Navigation