Skip to main content
Log in

Symmetric-triangular decomposition and its applications part II: Preconditioners for indefinite systems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

As an application of the symmetric-triangular (ST) decomposition given by Golub and Yuan (2001) and Strang (2003), three block ST preconditioners are discussed here for saddle point problems. All three preconditioners transform saddle point problems into a symmetric and positive definite system. The condition number of the three symmetric and positive definite systems are estimated. Therefore, numerical methods for symmetric and positive definite systems can be applied to solve saddle point problems indirectly. A numerical example for the symmetric indefinite system from the finite element approximation to the Stokes equation is given. Finally, some comments are given as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented system approach to sparse least-squares problems, Numer. Math., 55 (1989), pp. 667–684.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and Nonlinear Programming, Stanford University Press, Stanford, CA, 1958.

    Google Scholar 

  3. A. Battermann and E. W. Sachs, Block preconditioners for KKT systems arising in PDE-governed optimal control problems, in Fast Solution of Discretized Optimization Problems, K.-H. Hoffmann, R. H. W. Hoppe, and W. Schulz, eds., Birkhäuser, Berlin, 2000, 2001, pp. 1–18.

  4. M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1–137.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. R. Bergen, Power Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1986.

    Google Scholar 

  6. Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.

  7. Å. Björck, Numerical stability of methods for solving augmented systems, in Recent Developments in Optimization Theory and Nonlinear Analysis, Jerusalem, 1995, Contemp. Math., vol. 204, pp. 51–60, Am. Math. Soc., Providence, RI, 1997.

  8. Å. Björck and C. C. Paige, Solution of augmented linear systems using orthogonal factorization, BIT, 34 (1994), pp. 1–24.

  9. Å. Björck and J. Y. Yuan, Preconditioner for least squares problems by LU factorization, ETNA, 8 (1999), pp. 26–35.

  10. A. Bossavit, Mixed systems of algebraic equations in computational electromagnetics, COMPEL, 17 (1998), pp. 59–63.

    Google Scholar 

  11. D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn., Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  12. J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comput., 50 (1988), pp. 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Brezzi, On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numer., 8 (1974), pp. 129–151.

    MathSciNet  Google Scholar 

  14. C. Cordeiro, New ST Algorithms, Master dissertation, UFPR, Brazil, 2002.

  15. C. Cordeiro and J. Y. Yuan, Row-wise algorithms of ST decomposition, Appl. Math. Comput., 175 (2006), pp. 748–761.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Elman, A. Ramage, and D. Silvester, Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Softw., 33(2) (2007), pp. 251–268.

    Article  MathSciNet  Google Scholar 

  17. H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier–Stokes equations, SIAM J. Sci. Comput., 17 (1996), pp. 33–46.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Elman, D. J. Silvester, and A. Wathen, Iterative methods for problems in computational fluid dynamics, in Iterative Methods in Scientific Computing, R. Chan, T. Chan and G. Golub, eds., Springer, Singapore, 1997, pp. 271–327.

    Google Scholar 

  19. B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum residual methods for augmented systems, BIT, 38 (1998), pp. 527–543.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press [Harcourt Brace Jovanovich], London, 1981.

    MATH  Google Scholar 

  21. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer, New York, 1984.

  22. G. H. Golub and C. Greif, On solving block-structured indefinite linear systems, SIAM J. Sci. Comput., 24 (2003), pp. 2076–2092.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, 3rd edn., Johns Hopkins University Press, Baltimore, MD, 1996.

  24. G. H. Golub, X. Wu, and J. Y. Yuan, SOR-Like methods for augmented systems, BIT, 41 (2001), pp. 71–85.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. H. Golub and J. Y. Yuan, Symmetric-triangular decomposition and its applications – Part I: theorems and algorithms, BIT, 42 (2002), pp. 814–822.

    Article  MATH  MathSciNet  Google Scholar 

  26. E. Haber and U. M. Ascher, Preconditioned all-at-once methods for large, sparse parameter estimation problems, Inverse Probl., 17 (2001), pp. 1847–1864.

    Article  MATH  MathSciNet  Google Scholar 

  27. E. Haber and J. Modersitzki, Numerical methods for volume-preserving image registration, Inverse Probl., 20 (2004), pp. 1621–1638.

    Article  MATH  MathSciNet  Google Scholar 

  28. E. L. Hall, Computer Image Processing and Recognition, Academic, New York, 1979.

    MATH  Google Scholar 

  29. J. Liesen, E. de Sturler, A. Sheffer, Y. Aydin, and C. Siefert, Preconditioners for indefinite linear systems arising in surface parameterization, in Proc. 10th International Meshing Round Table, pp. 71–81, 2001.

  30. T. Lyche, T. K. Nilssen, and R. Winther, Preconditioned iterative methods for scattered data interpolation, Adv. Comput. Math., 17 (2002), pp. 237–256.

    Article  MATH  MathSciNet  Google Scholar 

  31. H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Wiley, New York, 1959.

    Google Scholar 

  32. T. P. Mathew, M. Sarkis, and C. E. Schaerer, Analysis of block matrix preconditioner for elliptic optimal control problems, Numer. Linear Algebr. Appl., 14 (2007), pp. 257–279.

    Article  MathSciNet  Google Scholar 

  33. S. G. Nash and A. Sofer, Preconditioned reduced matrices, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 47–68.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 1999.

    MATH  Google Scholar 

  35. C. Santiago, Numerical Experiments on ST decomposition, Master dissertation, UFPR, Brazil, 2002.

  36. C. Santiago and J. Y. Yuan, Modified ST algorithms and numerical experiments, Appl. Numer. Math., 47 (2003), pp. 237–253.

    Article  MATH  MathSciNet  Google Scholar 

  37. C. H. Santos, B. P. B. Silva, and J. Y. Yuan, Block SOR methods for rank deficient least squares problems, J. Comput. Appl. Math., 100 (1998), pp. 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  38. C. H. Santos and J. Y. Yuan, Preconditioned conjugate gradient methods for rank deficient least squares problems, Int. J. Comput. Math., 72 (1999), pp. 509–518.

    Article  MATH  MathSciNet  Google Scholar 

  39. G. Strang, Introduction to Linear Algebra, 3rd edn., Wellesley-Cambridge Press, Wellesley, MA, 2003.

    Google Scholar 

  40. T. Stykel, Balanced truncation model reduction for semidiscretized Stokes equations, Linear Algebra Appl., 415 (2006), pp. 262–289.

    Article  MATH  MathSciNet  Google Scholar 

  41. F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), pp. 235–286.

    Article  MATH  MathSciNet  Google Scholar 

  42. R. J. Vanderbei and T. J. Carpenter, Symmetric indefinite systems for interior point methods, Math. Progr., 58 (1993), pp. 1–32.

    Article  MATH  MathSciNet  Google Scholar 

  43. S. Wright, Stability of augmented system factorizations in interior-point methods, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 191–222.

    Article  MATH  MathSciNet  Google Scholar 

  44. S. J. Wright, Primal–Dual Interior Point Methods, SIAM, Philadelphia, PA, 1997.

    MATH  Google Scholar 

  45. S. Wright, Interior methods for nonlinear optimization, SIAM Rev., 44 (2002), pp. 525–597.

    Article  MATH  MathSciNet  Google Scholar 

  46. X. Wu, B. P. B. Silva, and J. Y. Yuan, Conjugate gradient method for rank deficient saddle point problems, Numer. Algorithms, 35 (2004), pp. 139–154.

    Article  MATH  MathSciNet  Google Scholar 

  47. J. Y. Yuan, Iterative Methods for Generalized Least Squares Problems, Ph.D. thesis, IMPA, Rio de Janeiro, Brazil, 1993.

  48. J. Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 66 (1996), pp. 571–584.

    Article  MATH  MathSciNet  Google Scholar 

  49. J. Y. Yuan, Quadratic eigenvalue functionals of ST preconditioners for saddle point problems, Tech. Report, Universidade Federal do Paraná, Brazil, 2007.

  50. J. Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient method for generalized least squares problems, J. Comput. Appl. Math., 71 (1996), pp. 287–297.

    Article  MATH  MathSciNet  Google Scholar 

  51. J. Y. Yuan and A. N. Iusem, Preconditioned SOR methods for generalized least squares problems, Acta Math. Appl. Sin., 16 (2000), pp. 130–139.

    Article  MATH  MathSciNet  Google Scholar 

  52. J. Y. Yuan and X. Q. Jin, Direct iterative methods for rank deficient generalized least squares problems, J. Comput. Math., 18 (2000), pp. 437–446.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Wu.

Additional information

AMS subject classification (2000)

65F10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Golub, G., Cuminato, J. et al. Symmetric-triangular decomposition and its applications part II: Preconditioners for indefinite systems . Bit Numer Math 48, 139–162 (2008). https://doi.org/10.1007/s10543-008-0160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-008-0160-5

Key words

Navigation