Skip to main content
Log in

Minimum residual methods for augmented systems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

For large systems of linear equations, iterative methods provide attractive solution techniques. We describe the applicability and convergence of iterative methods of Krylov subspace type for an important class of symmetric and indefinite matrix problems, namely augmented (or KKT) systems. Specifically, we consider preconditioned minimum residual methods and discuss indefinite versus positive definite preconditioning. For a natural choice of starting vector we prove that when the definite and indenfinite preconditioners are related in the obvious way, MINRES (which is applicable in the case of positive definite preconditioning) and full GMRES (which is applicable in the case of indefinite preconditioning) give residual vectors with identical Euclidean norm at each iteration. Moreover, we show that the convergence of both methods is related to a system of normal equations for which the LSQR algorithm can be employed. As a side result, we give a rare example of a non-trivial normal(1) matrix where the corresponding inner product is explicitly known: a conjugate gradient method therefore exists and can be employed in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Arnoldi,The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

    MATH  MathSciNet  Google Scholar 

  2. Å. Björck,Iterative refinement of linear least squares solutions, BIT, 7 (1967), pp. 257–278.

    Article  MATH  Google Scholar 

  3. R. Chandra,Conjugate Gradient Methods for Partial Differential Equations, PhD thesis, Yale University Res. Rep. 129, 1978.

  4. I. S. Duff,The solution of augmented systems, in Numerical Analysis 1993, D.F. Griffiths and G.A. Watson, eds., Longman, London, 1994, pp. 40–55.

    Google Scholar 

  5. S. Eisenstat,Some observations on the generalized conjugate gradient method, in Numerical Methods, V. Pereyra and A. Reinoza, eds., Lecture Notes in Mathematics, Volume 1005, Springer-Verlag, Berlin, 1983, pp. 99–107.

    Google Scholar 

  6. H. C. Elman and D. J. Silvester,Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput., 17 (1996), pp. 33–46.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Faber and T. Manteuffel,Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM J. Numer. Anal. 21 (1984), pp. 352–362.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Fischer,Polynomial Based Iteration Methods for Symmetric Linear Systems, Wiley-Teubner Series in Advances in Numerical Mathematics, Wiley-Teubner, Chichester, 1996.

    MATH  Google Scholar 

  9. M. Fortin and F. Brezzi,Mixed and Hybrid Finite Elements Methods, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  10. R. W. Freund and N. M. Nachtigal,QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315–339.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. W. Freund and N. M. Nachtigal,A new Krylov-subspace method for symmetric indefinite linear systems, in Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, W. F. Ames, ed., IMACS, 1994, pp. 1253–1256.

  12. G. H. Golub and C. F., Van Loan,Matrix Computations, 2nd ed., Johns Hopkins University Press, London, 1989.

    Google Scholar 

  13. C. Lanczos,An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Stand., 45 (1950), pp. 255–282.

    MathSciNet  Google Scholar 

  14. N. M. Nachtigal, S. C. Reddy and L. N. Trefethen,How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778–795.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. C. Paige and M. A. Saunders,Solution of sparse indefinite, systems of linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. C. Paige and M. A. Saunders,LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software 8 (1982), pp. 43–71.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Saad and M. H. Schultz,GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. A. Saunders,Solution of sparse rectangular systems using LSQR and Craig, BIT, 35 (1995), pp. 588–604.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. J. Silvester and A. J. Wathen,Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners, SIAM J. Numer. Anal., 31 (1994), pp. 1352–1367.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Szegö,Orthogonal Polynomials, AMS Colloquium Publications XXIII (revised ed.), AMS, New York, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Robert S. Schreiber

This work was supported by British Council/German Academic Exchange Service Research Collaboration Project 465 and NATO Collaborative Research Grant CRG 960782

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, B., Ramage, A., Silvester, D.J. et al. Minimum residual methods for augmented systems. Bit Numer Math 38, 527–543 (1998). https://doi.org/10.1007/BF02510258

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510258

AMS subject classification

Key words

Navigation