Skip to main content
Log in

Invariantization of numerical schemes using moving frames

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with a geometric technique to construct numerical schemes for differential equations that inherit Lie symmetries. The moving frame method enables one to adjust existing numerical schemes in a geometric manner and systematically construct proper invariant versions of them. Invariantization works as an adaptive transformation on numerical solutions, improving their accuracy greatly. Error reduction in the Runge–Kutta method by invariantization is studied through several applications including a harmonic oscillator and a Hamiltonian system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ablowitz, B. M. Herbst, and C. Schober, On the numerical solution of the sine-Gordon equation. I. Integrable discretizations and homoclinic manifolds, J. Comput. Phys., 126 (1996), pp. 299–314.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Anteneodo and C. Tsallis, Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions, Phys. Rev. Lett., 102 (1998), pp. 5313–5316.

    Article  Google Scholar 

  3. C. D. Bailey, Application of Hamilton’s law of varying action, AIAA J., 13 (1975), pp. 1154–1157.

    Article  MATH  Google Scholar 

  4. M. Baruch and R. Riff, Hamilton’s principle, Hamilton’s law and formulations, AIAA J., 20 (1982), pp. 687–692.

    MATH  Google Scholar 

  5. P. L. Bazin and M. Boutin, Structure from motion: a new look from the point of view of invariant theory, SIAM J. Appl. Math., 64(4) (2004), pp. 1156–1174.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Boutin, Numerically invariant signature curves, Int. J. Comput. Vis., 40 (2000), pp. 235–248.

    Article  MATH  Google Scholar 

  7. C. J. Budd and C. B. Collins, Symmetry based numerical methods for partial differential equations, in Numerical Analysis, D. F. Griffiths, D. J. Higham, and G. A. Watson, eds., Pitman Res. Notes Math., vol. 380, Longman, Harlow, 1998, pp. 16–36.

    Google Scholar 

  8. C. J. Budd and V. A. Dorodnitsyn, Symmetry adapted moving mesh schemes for the nonlinear Schrodinger equation, J. Phys. A, Math. Gen., 34(48) (2001), pp. 10387–10400.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Burrage, J. C. Butcher, and F. H. Chipman, An implementation of singly-implicit Runge–Kutta methods, BIT, 20 (1980), pp. 326–340.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Candy and W. Rozmus, A symplectic integrator algorithm for separable Hamiltonian functions, J. Comput. Phys., 92 (1991), pp. 230–256.

    Article  MATH  MathSciNet  Google Scholar 

  11. É. Cartan, La Méthode du Repère Mobile, la Théorie des Groupes Continus, et les Espaces Généralisés, Exposés de Géometrié, no. 5, Hermann, Paris, 1935.

  12. F. Casas and B. Owren, Cost efficient Lie group integrators in the RKMK class, BIT, 43 (2003), pp. 723–742.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. J. Channell and C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity, 3 (1990), pp. 231–259.

    Article  MATH  MathSciNet  Google Scholar 

  14. V. A. Dorodnitsyn, Finite difference models entirely inheriting continuous symmetry of original differential equations, Int. J. Mod. Phys. C, 5 (1994), pp. 723–724.

    Article  MATH  MathSciNet  Google Scholar 

  15. V. A. Dorodnitsyn, R. Kozlov, and P. Winternitz, Lie group classification of second order difference equations, J. Math. Phys., 41(1) (2000), pp. 480–504.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Fels and P. J. Olver, Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math., 55 (1999), pp. 127–208.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Feng, Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comput. Math., 4 (1986), pp. 279–289.

    MATH  MathSciNet  Google Scholar 

  18. E. Forest and R. Ruth, Fourth-order symplectic integration, Physica D, 43 (1990), pp. 105–117.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. F. Gerald, Applied Numerical Analysis, 6th edn., Addision-Wesley, Cambridge, MA, 1999.

    Google Scholar 

  20. V. Grimm and R. Scherer, A generalized W-transformation for constructing symplectic partitioned Runge–Kutta methods, BIT, 43(1) (2003), pp. 57–66(10).

  21. E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, vol. 31, Springer, 2002.

  22. P. E. Hydon, Symmetries and first integrals of ordinary difference equations, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 456(2004) (2000), pp. 2835–2855.

    Article  MATH  MathSciNet  Google Scholar 

  23. N. H. Ibragimov, ed., CRC Handbook of Lie Group to Differential Equations. V.1. Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, 1994.

  24. A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, Lie group methods, Acta Numer., 9 (2000), pp. 215–365.

    Article  Google Scholar 

  25. A. Iserles, On the global error of discretization methods for highly-oscillatory ordinary differential equations, BIT, 42 (2002), pp. 561–599.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. O. Jay, Inexact simplified Newton iterations for implicit Runge–Kutta methods, SIAM J. Numer. Anal., 38 (2000), pp. 1369–1388.

    Article  MATH  MathSciNet  Google Scholar 

  27. Z. Jia and B. Leimkuhler, Geometric integrators for multiple time scale simulation, J. Phys. A, Math. Gen., 39 (2006), pp. 5379–5403.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Kim and P. J. Olver, Geometric integration via multispace, Regul. Chaotic Dyn., 9(3) (2004), pp. 213–226.

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Kim, Invariantization of Numerical Schemes Using Moving Frames, Ph.D. Thesis, School of Mathematics, University of Minnesota, Minneapolis, 2006.

  30. P. Kim, Invariantization of the Crank–Nicolson Method for Burgers’ Equation, preprint.

  31. R. A. Labudde and D. Greenspan, Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. Part I, Numer. Math., 25 (1976), pp. 323–346.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A. C. M. Correia, and B. Levrard, A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428 (2004), pp. 261–285.

    Article  Google Scholar 

  33. B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge University Press, Cambridge, 2004, pp. 287–315.

    MATH  Google Scholar 

  34. D. Levi, V. Vinet, and P. Winternitz, Lie group formalism for difference equations, J. Phys. A, Math. Gen., 30 (1997), pp. 633–649.

    Article  MATH  MathSciNet  Google Scholar 

  35. D. Lewis and J. C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, J. Nonlinear Sci., 4 (1994), pp. 253–299.

    Article  MATH  MathSciNet  Google Scholar 

  36. D. Lewis and P. J. Olver, Geometric integration algorithms on homogeneous manifolds, Found. Comput. Math., 3 (2002), pp. 363–392.

    Article  MathSciNet  Google Scholar 

  37. A. Marciniak, Energy conserving, arbitrary order numerical solutions of the N-body problem, Numer. Math., 45 (1984), pp. 207–218.

    Article  MATH  MathSciNet  Google Scholar 

  38. J. E. Marsden, G. W. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Commun. Math. Phys., 199(2) (1998), pp. 351–395.

    Article  MATH  MathSciNet  Google Scholar 

  39. R. I. McLachlan, G. R. W. Quispel, and G. S. Turner, Numerical integrators that preserve symmetries and reversing symmetries, SIAM J. Numer. Anal., 35 (1998), pp. 586–599.

    Article  MATH  MathSciNet  Google Scholar 

  40. R. McLachlan and R. Quispel, Geometric integrators for ODEs, J. Phys. A, Math. Gen., 39(19) (2006), pp. 5251–5285.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun. Math. Phys., 139 (1991), pp. 217–243.

    Article  MATH  MathSciNet  Google Scholar 

  42. P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd edn., Grad. Texts Math., vol. 107, Springer, New York, 1993, pp. 13–23.

  43. P. J. Olver, Classical Invariant Theory, Lond. Math. Soc. Stud. Text, vol. 44, Cambridge University press, Cambridge, 1999, pp. 150–197.

    MATH  Google Scholar 

  44. P. J. Olver, Geometric foundations of numerical algorithms and symmetry, Appl. Alg. Eng. Comput. Commun., 11 (2001), pp. 417–436.

    Article  MATH  MathSciNet  Google Scholar 

  45. P. J. Olver, Moving frames – in geometry, algebra, computer vision, and numerical analysis, in Foundations of Computational Mathematics, R. DeVore, A. Iserles, and E. Suli, eds., Lond. Math. Soc. Lect. Note Ser., vol. 284, Cambridge University Press, Cambridge, 2001, pp. 267–297.

    Google Scholar 

  46. G. R. W. Quispel and C. Dyt, Solving ODE’s numerically while preserving symmetries, Hamiltonian structure, phase space volume or first integrals, in Proceedings IMALS 1997 World Congress, A. Sydow, ed., vol. 2, Wissenschaft & Technik, Berlin, 1997, pp. 601–607.

  47. B. A. Shadwick, J. C. Bowman, and P. J. Morrison, Exactly conservative integrators, SIAM J. Appl. Math., 59 (1999), pp. 1112–1133.

    Article  MATH  MathSciNet  Google Scholar 

  48. R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers, Sounders College Publishing, Philadelphia, 2000, pp. 389–422.

    Google Scholar 

  49. J. C. Simo and N. Tarnow, The discrete energy-momentum method: Conserving algorithms for nonlinear elastodynamics, Z. Angew. Math. Phys., 43 (1992), pp. 757–792.

    Article  MATH  MathSciNet  Google Scholar 

  50. J. C. Simo, N. Tarnow, and K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics, Comput. Methods Appl. Mech. Eng., 100 (1992), pp. 63–116.

    Article  MATH  MathSciNet  Google Scholar 

  51. F. Valiquette, Discretizations preserving all Lie point symmetries of the Korteweg–de Vries equation, Proceedings Volume of the XXV International Colloquium on Group Theoretical Methods in Physics, 2005, pp. 539–544.

  52. A. R. Walton and D. E. Manolopoulos, A new semiclassical initial value method for Franck–Condon spectra, Molecular Phys., 87 (1996), pp. 961–978.

    Article  Google Scholar 

  53. J. Wisdom, M. Holman, and J. Touma, Symplectic correctors, in Integration Algorithms and Classical Mechanics, J. E. Marsden, G. W. Patrick, and W. F. Shadwick, eds., American Mathematical Society, Providence, RI, 1996, pp. 217–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilwon Kim.

Additional information

AMS subject classification (2000)

65L12, 70G65

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, P. Invariantization of numerical schemes using moving frames . Bit Numer Math 47, 525–546 (2007). https://doi.org/10.1007/s10543-007-0138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-007-0138-8

Key words

Navigation