Skip to main content
Log in

Structural Basis of Chemokine Receptor Function—A Model for Binding Affinity and Ligand Selectivity

  • Original Paper
  • Published:
Bioscience Reports

Abstract

Chemokine receptors play fundamental roles in human physiology from embryogenesis to inflammatory response. The receptors belong to the G-protein coupled receptor class, and are activated by chemokine ligands with a range of specificities and affinities that result in a complicated network of interactions. The molecular basis for function is largely a black box, and can be directly attributed to the lack of structural information on the receptors. Studies to date indicate that function can be best described by a two-site model, that involves interactions between the receptor N-domain and ligand N-terminal loop residues (site-I), and between receptor extracellular loop and the ligand N-terminal residues (site-II). In this review, we describe how the two-site model could modulate binding affinity and ligand selectivity, and also highlight some of the unique chemokine receptor features, and their role in function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahuja SK, Lee JC, Murphy PM (1996) CXC chemokines bind to unique sets of selectivity determinants that can function independently and are broadly distributed on multiple domains of human interleukin-8 receptor B. Determinants of high affinity binding and receptor activation are distinct. J Biol Chem 271:225–232

    PubMed  CAS  Google Scholar 

  2. Ahuja SK, Murphy PM (1996) The CXC chemokines growth-regulated oncogene (GRO)α, GROβ, GROγ, Neutrophil-activating peptide-2, and epithelial cell-dervived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, Human interleukin-8 receptor. J Biol Chem 271:20545–20550

    PubMed  CAS  Google Scholar 

  3. Alcami A (2003) Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3:36–50

    PubMed  CAS  Google Scholar 

  4. Baldwin JM (1994) Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol 6:180–190

    PubMed  CAS  Google Scholar 

  5. Baltus T, Weber KS, Johnson Z, Proudfoot AE, Weber C (2003) Oligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium. Blood 102:1985–1988

    PubMed  CAS  Google Scholar 

  6. Baly DL, Horuk R, Yansura DG, Simmons LC, Fairbrother WJ, Kotts C, Wirth CM, Gillece-Castro BL, Toy K, Hesselgesser J, Allison DE (1998) A His19 to Ala mutant of melanoma growth-stimulating activity is a partial antagonist of the CXCR2 receptor. J Immunol 161:4944–4949

    PubMed  CAS  Google Scholar 

  7. Berger EA, Murphy PM, Farber JM (1999) Chemokine Receptors as HIV-1 Coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700

    PubMed  CAS  Google Scholar 

  8. Blanpain C, Doranz BJ, Bondue A, Govaerts C, De Leener A, Vassart G, Doms RW, Proudfoot A, Parmentier M (2003) The core domain of chemokines binds CCR5 extracellular domains while their amino terminus interacts with the transmembrane helix bundle. J Biol Chem 278:5179–5187

    PubMed  CAS  Google Scholar 

  9. Blanpain C, Doranz BJ, Vakili J, Rucker J, Govaerts C, Baik SS, Lorthioir O, Migeotte I, Libert F, Baleux F, Vassart G, Doms RW, Parmentier M (1999) Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein. J Biol Chem 274:34719–34727

    PubMed  CAS  Google Scholar 

  10. Blanpain C, Lee B, Vakili J, Doranz BJ, Govaerts C, Migeotte I, Sharron M, Dupriez V, Vassart G, Doms RW, Parmentier M (1999) Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity. J Biol Chem 274:18902–18908

    PubMed  CAS  Google Scholar 

  11. Bondue A, Jao SC, Blanpain C, Parmentier M, LiWang PJ (2002) Characterization of the role of the N-loop of MIP-1 beta in CCR5 binding. Biochemistry 41:13548–13555

    PubMed  CAS  Google Scholar 

  12. Booth V, Keizer DW, Kamphuis MB, Clark-Lewis I, Sykes BD (2002) The CXCR3 binding chemokine IP-10/CXCL10: structure and receptor interactions. Biochemistry 41:10418–10425

    PubMed  CAS  Google Scholar 

  13. Brelot A, Heveker N, Montes M, Alizon M (2000) Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem 275:23736–23744

    PubMed  CAS  Google Scholar 

  14. Campanella GS, Lee EM, Sun J, Luster AD (2003) CXCR3 and heparin binding sites of the chemokine IP-10 (CXCL10). J Biol Chem 278:17066–17074

    PubMed  CAS  Google Scholar 

  15. Chung IY, Kim YH, Choi MK, Noh YJ, Park CS, Kwon do Y, Lee DY, Lee YS, Chang HS, Kim KS (2004) Eotaxin and monocyte chemotactic protein-3 use different modes of action. Biochem Biophys Res Commun 314:646–653

    PubMed  CAS  Google Scholar 

  16. Clark-Lewis I, Dewald B, Geiser T, Moser B, Baggiolini M (1993) Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci USA 90:3574–3577

    PubMed  CAS  Google Scholar 

  17. Clark-Lewis I, Dewald B, Loetscher M, Moser B, Baggiolini M (1994) Structural requirements for IL8 function identified by design of analogs and CXC chemokine hybrids. J Biol Chem 269:16075–16081

    PubMed  CAS  Google Scholar 

  18. Clark-Lewis I, Kim K-S, Rajarathnam K, Gong J-H, Dewald B, Moser B Baggiolini M, Sykes BD (1995) Structure-activity relationships of chemokines. J Leukoc Biol 57:703–711

    PubMed  CAS  Google Scholar 

  19. Clark-Lewis I, Schumacher C, Baggiolini M, Moser B (1991) Structure-activity relationship of interleukin-8 determined using chemically synthesized analogs. J Biol Chem 266:23128–23134

    PubMed  CAS  Google Scholar 

  20. Clore GM, Appella E, Yamada M, Matsushima K, Gronenborn AM (1990) Three-dimensional structure of interleukin 8 in solution. Biochemistry 29:1689–1696

    PubMed  CAS  Google Scholar 

  21. Cormier EG, Persuh M, Thompson DA, Lin SW, Sakmar TP, Olson WC, Dragic T (2000) Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. Proc Natl Acad Sci USA 97:5762–5767

    PubMed  CAS  Google Scholar 

  22. Crump MP, Gong J-H, Loetscher P, Rajarathnam K, Amara A, Aranzana-Seisdedos F, Virelizier J-L, Baggiolini M, Sykes BD, Clark-Lewis I (1997) Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J 16:6996–7007

    PubMed  CAS  Google Scholar 

  23. Crump M, Rajarathnam K, Kim K-S, Clark-Lewis I, Sykes BD (1998) Solution structure of eotaxin: a chemokine that selectively recruits eosinophils in allergic inflammation. J Biol Chem 273:22471–22479

    PubMed  CAS  Google Scholar 

  24. Czaplewski LG, McKeating J, Craven CJ, Higgins LD, Appay V, Brown A, Dudgeon T, Howard LA, Meyers T, Owen J, Palan SR, Tan P, Wilson G, Woods NR, Heyworth CM, Lord BI, Brotherton D, Christison R, Craig S, Cribbes S, Edwards RM, Evans SJ, Gilbert R, Morgan P, Hunter MG et al (1999) Identification of amino acid residues critical for aggregation of human CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES. Characterization of active disaggregated chemokine variants. J Biol Chem 274:16077–16084

    PubMed  CAS  Google Scholar 

  25. Datta-Mannan A, Stone MJ (2004) Chemokine-binding specificity of soluble chemokine-receptor analogues: identification of interacting elements by chimera complementation. Biochemistry 43:14602–14611

    PubMed  CAS  Google Scholar 

  26. Fairbrother WJ, Reilly D, Colby TJ, Hesselgesser J, Horuk R (1994) The solution structure of melanoma growth stimulatory activity. J Mol Biol 242:252–270

    PubMed  CAS  Google Scholar 

  27. Farzan M, Babcock GJ, Vasilieva N, Wright PL, Kiprilov E, Mirzabekov T, Choe H (2002) The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1 alpha association and HIV-1 entry. J Biol Chem 277:29484–29489

    PubMed  CAS  Google Scholar 

  28. Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayabyab M, Gerard NP, Gerard C, Sodroski J, Choe H (1999) Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96:667–676

    PubMed  CAS  Google Scholar 

  29. Fernandez EJ, Lolis E (2002) Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 42:469–499

    PubMed  CAS  Google Scholar 

  30. Fernando H, Chin C, Rösgen J, Rajarathnam K (2004) Dimer dissociation is essential for interleukin-8 (IL8) binding to CXCR1 receptor. J Biol Chem 279:36175–36178

    PubMed  CAS  Google Scholar 

  31. Fong AM, Alam SM, Imai T, Haribabu B, Patel DD (2002) CX3CR1 tyrosine sulfation enhances fractalkine-induced cell adhesion. J Biol Chem 277:19418–19489

    PubMed  CAS  Google Scholar 

  32. Gayle RB, Sleath PR, Srinivason S, Birks CW, Weerawarna KS, Cerretti DP, Kozlosky CJ, Nelson N, Vanden Bos T, Beckmann MP (1993) Importance of the amino terminus of the interleukin-8 receptor in ligand interactions. J Biol Chem 268:7283–7289

    PubMed  CAS  Google Scholar 

  33. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2:123–128

    Google Scholar 

  34. Gong JH, Uguccioni M, Dewald B, Baggiolini M, Clark-Lewis I (1996) RANTES and MCP-3 antagonists bind multiple chemokine receptors. J Biol Chem 271:10521–10527

    PubMed  CAS  Google Scholar 

  35. Hammond ME, Shyamala V, Siani MA, Gallegos CA, Feucht PH, Abbott J, Lapointe GR, Moghadam M, Khoja H, Zakel J, Tekamp-Olsen P (1996) Receptor recognition and specificity of interleukin-8 is determined by residues that cluster near a surface-accessible hydrophobic pocket. J Biol Chem 271:8228–8235

    PubMed  CAS  Google Scholar 

  36. Han KH, Green SR, Tangirala RK, Tanaka S, Quehenberger O (1999) Role of the first extracellular loop in the functional activation of CCR2. The first extracellular loop contains distinct domains necessary for both agonist binding and transmembrane signaling. J Biol Chem 274:32055–32062

    PubMed  CAS  Google Scholar 

  37. Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu Rev Biochem 74:385–410

    PubMed  CAS  Google Scholar 

  38. Hebert CA, Chuntharapai A, Smith M, Colby T, Kim J, Horuk R (1993) Partial functional mapping of the human interleukin-8 type A receptor. Identification of a major ligand binding domain. J Biol Chem 268:18549–18553

    PubMed  CAS  Google Scholar 

  39. Hesselgesser J, Chitnis CE, Miller LH, Yansura DG, Simmons LC, Fairbrother WJ, Kotts C, Wirth C, Gillece-Castro BL, Horuk R (1995) A mutant of melanoma growth stimulating activity does not activate neutrophils but blocks erythrocyte invasion by malaria. J Biol Chem 270:11472–11476

    PubMed  CAS  Google Scholar 

  40. Hoogewerf AJ, Kuschert GSV, Proudfoot AE, Borlat F, Clark-Lewis I, Power CA, Wells TN (1997) Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 36:13570–13578

    PubMed  CAS  Google Scholar 

  41. Ji TH, Grossmann M, Ji I (1998) G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J Biol Chem 273:17299–17302

    PubMed  CAS  Google Scholar 

  42. Johnson Z, Power CA, Weiss C, Rintelen F, Ji H, Ruckle T, Camps M, Wells TNC, Schwarz MK, Proudfoot AEI, Rommel C (2004) Chemokine inhibition—why, when, where, which and how?. Bioch Soc Trans 37:366–377

    Google Scholar 

  43. Katancik JA, Sharma A, de Nardin E (2000) Interleukin 8:neutrophil-activating peptide-2 and GRO-alpha bind to and elicit cell activation via specific and different amino acid residues of CXCR2. Cytokine 12:1480–1488

    PubMed  CAS  Google Scholar 

  44. Kim KS, Clark-Lewis I, Sykes BD (1994) Solution structure of GRO/melanoma growth stimulatory activity determined by 1H NMR spectroscopy. J Biol Chem 269:32909–32915

    PubMed  CAS  Google Scholar 

  45. Kim KS, Rajarathnam K, Clark-Lewis I, Sykes BD (1996) Structural characterization of a monomeric chemokine: monocyte chemoattractant protein-3. FEBS Lett 395:277–282

    PubMed  CAS  Google Scholar 

  46. Lalani AS, McFadden G (1999) Evasion and exploitation of chemokines by viruses. Cytokine Growth Factor Rev 10:219–233

    PubMed  CAS  Google Scholar 

  47. LaRosa GJ, Thomas KM, Kaufmann ME, Mark R, White M, Taylor L, Gray G, Witt D, Navarro J (1992) Amino terminus of the interleukin-8 receptor is a major determinant of receptor subtype specificity. J Biol Chem 267:25402–25406

    PubMed  CAS  Google Scholar 

  48. Lau EK, Allen S, Hsu AR, Handel TM (2004) Chemokine-receptor interactions: GPCRs, glycosaminoglycans and viral chemokine binding proteins. Adv Protein Chem 68:351–391

    Article  PubMed  CAS  Google Scholar 

  49. Laurence JS, Blanpain C, Burgner JW, Parmentier M, LiWang PJ (2000) CC chemokine MIP-1 beta can function as a monomer and depends on Phe13 for receptor binding. Biochemistry 39:3401–3409

    PubMed  CAS  Google Scholar 

  50. Laurence JS, Blanpain C, De Leener A, Parmentier M, LiWang PJ (2001) Importance of basic residues and quaternary structure in the function of MIP-1 beta: CCR5 binding and cell surface sugar interactions. Biochemistry 40:4990–4999

    PubMed  CAS  Google Scholar 

  51. Limatola C, Di Bartolomeo S, Catalana M, Trettel F, Fucile S, Castellani L, Eusebi F (2005) Cysteine residues are critical for chemokine receptor CXCR2 functional properties. Exp Cell Res 307:65–75

    PubMed  CAS  Google Scholar 

  52. Lodi PJ, Garrett DS, Kuszewski J, Tsang ML-S, Weatherbee JA, Leonard WJ, Gronenborn AM, Clore GM (1994) High-resolution solution structure of the β chemokine hMIP-1β by multidimensional NMR. Science 263:1762–1767

    PubMed  CAS  Google Scholar 

  53. Loetscher P, Gong JH, Dewald B, Baggiolini M, Clark-Lewis I (1998) N-terminal peptides of stromal cell-derived factor-1 with CXC chemokine receptor 4 agonist and antagonist activities. J Biol Chem 273(35):22279–22283

    PubMed  CAS  Google Scholar 

  54. Lowman HB, Slagle PH, DeForge LE, Wirth CM, Gillece-Castro BL, Bourell JH, Fairbrother WJ (1996) Exchanging interleukin-8 and melanoma growth-stimulating activity receptor binding specificities. J Biol Chem 271:14344–14352

    PubMed  CAS  Google Scholar 

  55. Luster AD (1998) Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    PubMed  CAS  Google Scholar 

  56. Luster AD (2002) The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunology 14:129–135

    CAS  Google Scholar 

  57. Mayer KL, Stone MJ (2000) NMR solution structure and receptor peptide binding of the CC chemokine eotaxin-2. Biochemistry 39:8382–8395

    PubMed  CAS  Google Scholar 

  58. Martin L, Blanpain C, Garnier P, Wittamer V, Parmentier M, Vita C (2001) Structural and functional analysis of the RANTES-glycosaminoglycans interactions. Biochemistry 40:6303–6318

    PubMed  CAS  Google Scholar 

  59. Mizoue LS, Bazan JF, Johnson EC, Handel TM (1999) Solution structure and dynamics of the CX3C chemokine domain of fractalkine and its interaction with an N-terminal fragment of CX3CR1. Biochemistry 38:1402–1414

    PubMed  CAS  Google Scholar 

  60. Monteclaro FS, Charo IF (1996) The amino-terminal extracellular domain of the MCP-1 receptor, but not the RANTES/MIP-1alpha receptor, confers chemokine selectivity. Evidence for a two-step mechanism for MCP-1 receptor activation. J Biol Chem 271:19084–19092

    PubMed  CAS  Google Scholar 

  61. Moser B, Dewald B, Barella L, Schumacher C, Baggiolini M, Clark-Lewis I (1993) Interleukin-8 antagonists generated by N-terminal modification. J Biol Chem 268:7125–7128

    PubMed  CAS  Google Scholar 

  62. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25:75–84

    PubMed  CAS  Google Scholar 

  63. Murphy PM (2001) Chemokines and the molecular basis of cancer metastasis. N Engl J Med 345:833–835

    PubMed  CAS  Google Scholar 

  64. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    PubMed  CAS  Google Scholar 

  65. Nesmelova IV, Sham Y, Dudek AZ, van Eijk LI, Wu G, Slungaard A, Mortari F, Griffioen AW, Mayo KH (2005) Platelet factor 4 and interleukin-8 CXC chemokine heterodimer formation modulates function at the quaternary structural level. J Biol Chem 280:4948–4958

    PubMed  CAS  Google Scholar 

  66. Nguyen DH, Taub D (2002) Cholesterol is essential for macrophage inflammatory protein 1 beta binding and conformational integrity of CC chemokine receptor 5. Blood 99:4298–4306

    Google Scholar 

  67. Paavola CD, Hemmerich S, Grunberger D, Polsky I, Bloom A, Freedman R, Mulkins M, Bhakta S, McCarley D, Wiesent L, Wong B, Jarnagin K, Handel TM (1998) Monomeric MCP-1 binds and activates the MCP-1 receptor CCR2b. J Biol Chem 273:33157–33165

    PubMed  CAS  Google Scholar 

  68. Pakianathan DR, Kuta EG, Artis DR, Skelton NJ, Hebert CA (1997) Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. Biochemistry 36:9642–9648

    PubMed  CAS  Google Scholar 

  69. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–45

    PubMed  CAS  Google Scholar 

  70. Preobrazhensky AA, Dragan S, Kawano T, Gavrilin MA, Gulina IV, Chakravarty L, Kolattukudy PE (2000) Monocyte chemotactic protein-1 receptor CCR2B is a glycoprotein that has tyrosine sulfation in a conserved extracellular N-terminal region. J Immunol 165:5295–5303

    PubMed  CAS  Google Scholar 

  71. Proudfoot AE, Fritchley S, Borlat F, Shaw JP, Vilbois F, Zwahlen C, Trkola A, Marchant D, Clapham PR, Wells TN (2001) The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J Biol Chem 276:10620–10626

    PubMed  CAS  Google Scholar 

  72. Proudfoot AE, Power CA, Hoogewerf AJ, Montjovent MO, Borlat F, Offord RE, Wells TN (1996) Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem 271:2599–2603

    PubMed  CAS  Google Scholar 

  73. Qian YQ, Johanson KO, McDevitt P (1999) Nuclear magnetic resonance solution structure of truncated human GRObeta [5–73] and its structural comparison with CXC chemokine family members GROalpha and IL-8. J Mol Biol 294:1065–1072

    PubMed  CAS  Google Scholar 

  74. Rajagopalan L, Rajarathnam K (2004) Ligand selectivity and affinity of chemokine receptor CXCR1: role of N-terminal domain. J Biol Chem 279:30000–30008

    PubMed  CAS  Google Scholar 

  75. Rajagopalan L, Rösgen J, Bolen DW, Rajarathnam K (2005) Novel use of an osmolyte to dissect thermodynamic linkages between receptor N-domain folding, ligand binding, and ligand dimerization in a chemokine-receptor system. Biochemistry 44:12932–12939

    PubMed  CAS  Google Scholar 

  76. Rajarathnam K (2002) Designing decoys for chemokine-chemokine receptor interaction. Curr Pharm, Des 8:2159–2169

    CAS  Google Scholar 

  77. Rajarathnam K, Clark-Lewis I, Sykes BD (1994) 1H NMR studies of interleukin-8 analogs: characterization of the domains essential for function. Biochemistry 33:6623–6630

    PubMed  CAS  Google Scholar 

  78. Rajarathnam K, Clark-Lewis I, Sykes BD (1995) 1H NMR solution structure of an active interleukin-8 monomer. Biochemistry 34:12893–12990

    Google Scholar 

  79. Rajarathnam K, Clark-Lewis I, Dewald B, Baggiolini M, Sykes BD (1996) 1H NMR evidence that Glu-38 interacts with the N-terminal domain in Interleukin-8. FEBS Lett 399:43–46

    PubMed  CAS  Google Scholar 

  80. Rajarathnam K, Dewald B, Baggiolini M, Sykes BD, Clark-Lewis I (1999) Disulfide bridges in interleukin-8 probed using non-natural disulfide analogs: dissociation of roles in structure and function. Biochemistry 38:7653–7658

    PubMed  CAS  Google Scholar 

  81. Rajarathnam K, Kay CM, Clark-Lewis I, Sykes BD (1997) Characterization of quaternary structure of Interleukin-8 and functional implications. Methods Enzymol 287:89–105

    PubMed  CAS  Google Scholar 

  82. Rajarathnam K, Kay CM, Dewald B, Wolf M, Baggiolini M, Clark-Lewis I, Sykes BD (1997) Neutrophil activating peptide-2 (NAP-2) and Melanoma growth stimulatory activity (MGSA) are functional as Monomers for Neutrophil activation. J Biol Chem 272:1725–1729

    PubMed  CAS  Google Scholar 

  83. Rajarathnam K, Li Y, Rohrer T, Gentz R (2001) Solution structure and dynamics of Myeloid progenitor inhibitor factor-1 (MPIF-1): a novel monomeric CC chemokine. J BiolChem 276:4909–4916

    CAS  Google Scholar 

  84. Rajarathnam K, Sykes BD, Kay CM, Dewald B, Geiser T, Baggiolini M, Clark-Lewis I (1994) Neutrophil activation by monomeric IL8. Science 264:90–92

    PubMed  CAS  Google Scholar 

  85. Rajarathnam K, Prado G, Fernando H, Clark-Lewis I, Navarro J (2006) Probing receptor binding activity of CXCL8 Dimer using a disulfide ‘trap’. Biochemistry 45:7882–7888

    PubMed  CAS  Google Scholar 

  86. Richmond A, Fan GH, Dhawan P, Yang J (2004) How do chemokine/chemokine receptor activations affect tumorigenesis?. Novartis Found Symp 256:74–89

    Article  PubMed  CAS  Google Scholar 

  87. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    PubMed  CAS  Google Scholar 

  88. Schraufstatter IU, Ma M, Oades ZG, Barritt DS, Cochrane CG (1995) The role of Tyr13 and Lys15 of interleukin-8 in the high affinity interaction with the interleukin-8 receptor type A. J Biol Chem 270:10428–10431

    PubMed  CAS  Google Scholar 

  89. Shi XF, Liu S, Xiangyu J, Zhang Y, Huang J, Liu S, Liu CQ (2002) Structural analysis of human CCR2b and primate CCR2b by molecular modeling and molecular dynamics simulation. J Mol Model (Online) 7:217–222

    Google Scholar 

  90. Shinkai A, Komuta-Kunitomo M, Sato-Nakamura N, Anazawa H (2002) N-terminal domain of eotaxin-3 is important for activation of CC chemokine receptor 3. Protein Eng 15:923–929

    PubMed  CAS  Google Scholar 

  91. Skelton NJ, Aspiras F, Ogez J, Schall TJ (2002) Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry 34:5329–5342

    Google Scholar 

  92. Skelton NJ, Quan C, Reilly D, Lowman H (1999) Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure Fold Des 7:157–168

    PubMed  CAS  Google Scholar 

  93. Springael JY, Urizar E, Parmentier M (2005) Dimerization of chemokine receptors and its functional consequences. Cytokine Growth Factor Rev 16:611–623

    PubMed  CAS  Google Scholar 

  94. Suzuki H, Prado GN, Wilkinson N, Navarro J (1994) The N terminus of interleukin-8 (IL8) receptor confers high affinity binding to human IL8. J Biol Chem 269:18263–18266

    PubMed  CAS  Google Scholar 

  95. von Hundelshausen P, Koenen RR, Sack M, Mause SF, Adriaens W, Proudfoot AE, Hackeng TM, Weber C (2005) Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105:924–930

    Google Scholar 

  96. Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS, Folkerts G, Nijkamp FP, Blalock JE (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12:317–323

    PubMed  CAS  Google Scholar 

  97. Wells TN, Power CA, Lusti-Narasimhan M, Hoogewerf AJ, Cooke RM, Chung CW, Peitsch MC, Proudfoot AE (1996) Selectivity and antagonism of chemokine receptors. J Leukoc Biol 59:53–60

    PubMed  CAS  Google Scholar 

  98. Williams G, Borkakoti N, Bottomley GA, Cowan I, Fallowfield AG, Jones PS, Kirtland SJ, Price GJ, Price L (1996) Mutagenesis studies of interleukin-8. Identification of a second epitope involved in receptor binding. J Biol Chem 271:9579–9586

    PubMed  CAS  Google Scholar 

  99. Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    PubMed  CAS  Google Scholar 

  100. Wu L, Ruffing N, Shi X, Newman W, Soler D, Mackay CR, Qin S (1996) Discrete steps in binding and signaling of interleukin-8 with its receptor. J Biol Chem 271:31202–31209

    PubMed  CAS  Google Scholar 

  101. Yan Z, Zhang J, Holt JC, Stewart GJ, Niewiarowski S, Poncz M (1994) Structural requirements of platelet chemokines for neutrophil activation. Blood 84:2329–2339

    PubMed  CAS  Google Scholar 

  102. Ye J, Kohli LL, Stone MJ (2000) Characterization of binding between the chemokine eotaxin and peptides derived from the chemokine receptor CCR3. J Biol Chem 275:27250–27257

    PubMed  CAS  Google Scholar 

  103. Zhou N, Luo Z, Luo J, Liu D, Hall JW, Pomerantz RJ, Huang Z (2001) Structural and functional characterization of human CXCR4 as a chemokine receptor and HIV-1 co-receptor by mutagenesis and molecular modeling studies. J Biol Chem 276:42826–42833

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health, American Heart Association, and the John Sealy Endowment Grant (to K. R.), and by a McLaughlin Predoctoral Fellowship (to L. R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Rajarathnam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, L., Rajarathnam, K. Structural Basis of Chemokine Receptor Function—A Model for Binding Affinity and Ligand Selectivity. Biosci Rep 26, 325–339 (2006). https://doi.org/10.1007/s10540-006-9025-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10540-006-9025-9

Keywords

Navigation