Skip to main content
Log in

Phosphoproteome Analysis

  • Published:
Bioscience Reports

Abstract

Protein phosphorylation is directly or indirectly involved in all important cellular events. The understanding of its regulatory role requires the discovery of the proteins involved in these processes and how, where and when protein phosphorylation takes place. Investigation of the phosphoproteome of a cell is becoming feasible today although it still represents a very difficult task especially if quantitative comparisons have to be made. Several different experimental strategies can be employed to explore phosphoproteomes and this review will cover the most important ones such as incorporation of radiolabeled phosphate into proteins, application of specific antibodies against phosphorylated residues and direct staining of phosphorylated proteins in polyacrylamide gels. Moreover, methods to enrich phosphorylated proteins such as affinity chromatography (IMAC) and immunoprecipitation as well as mass spectrometry for identification of phosphorylated peptides and phosphorylation sites are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IMAC:

immobilized metal affinity chromatography

1D:

one dimensional

2D:

two dimensional

ECL:

enhanced chemiluminescence

pY:

phosphotyrosine

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

MP:

multiplex proteomics

DIGE:

difference gel electrophoresis

SILAC:

stable isotope labeling with amino acids in cell culture

CID:

collision-induced dissociation

amu:

atomic mass unit

ESI:

electrospray ionization

λ PPase:

lambda phosphatase

References

  1. J. C. Venter M. D. Adams E. W. Myers P. W. Li R. J. Mural G. G. Sutton H. O. Smith M. Yandell C. A. Evans et al. (2001) ArticleTitleThe sequence of the human genome Science 291 1304–13051 Occurrence Handle10.1126/science.1058040 Occurrence Handle11181995

    Article  PubMed  Google Scholar 

  2. R. G. Krishna F Wold (1998) Posttranslational modifications R. H. Angeletti. (Eds) Proteins – Analysis and Design Academic Press San Diego Ca 121–206

    Google Scholar 

  3. http://www.abrf.org/index.cfm/dm.home?AvgMass=all.

  4. E. H. Fischer E. G. Krebs (1955) ArticleTitleConversion of phosphorylase b to phosphorylase a in muscle extracts J. Biol. Chem. 216 121–132 Occurrence Handle13252012

    PubMed  Google Scholar 

  5. G. Manning D. B. Whyte R. Martinez T. Hunter S. Sudarsanam (2002) ArticleTitleThe protein kinase complement of the human genome Science 298 1912–1934 Occurrence Handle10.1126/science.1075762 Occurrence Handle12471243

    Article  PubMed  Google Scholar 

  6. T. Hunter (1995) ArticleTitleProtein kinase and phosphatase: the tin and yang of protein phosphorylation and signaling. Cell 80 225–236 Occurrence Handle10.1016/0092-8674(95)90405-0 Occurrence Handle7834742

    Article  PubMed  Google Scholar 

  7. A. Alonso J. Sasin N. Bottini I. Friedberg I. Friedberg A. Osterman A. Godzik T. Hunter J. Dixon T. Mustelin (2004) ArticleTitleProtein tyrosine phosphatases in the human genome Cell 117 699–711 Occurrence Handle10.1016/j.cell.2004.05.018 Occurrence Handle15186772

    Article  PubMed  Google Scholar 

  8. X. Zhu H. Lee A. K. Raina G. Perry M. A. Smith (2002) ArticleTitleThe role of mitogen-activated protein kinase pathways in Alzheimer’s disease Neurosignals 11 270–281 Occurrence Handle10.1159/000067426 Occurrence Handle12566928

    Article  PubMed  Google Scholar 

  9. C. V. Clevenger (2004) ArticleTitleRoles and regulation of stat family transcription factors in human breast cancer. Am. J. Pathol. 165 1449–1460 Occurrence Handle15509516

    PubMed  Google Scholar 

  10. T. Hunter (1998) ArticleTitleThe Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353 583–605 Occurrence Handle10.1098/rstb.1998.0228 Occurrence Handle9602534

    Article  PubMed  Google Scholar 

  11. A. Sickamm H. E. Meyer (2001) ArticleTitlePhosphoamino acid analysis Proteomics 1 200–206 Occurrence Handle10.1002/1615-9861(200102)1:2<200::AID-PROT200>3.3.CO;2-M Occurrence Handle11680867

    Article  PubMed  Google Scholar 

  12. D. E. Kalume H. Molina A. Pandey (2003) ArticleTitleTackling the phosphoproteome: tools and strategies Curr. Opin. Chem. Biol. 7 64–69 Occurrence Handle10.1016/S1367-5931(02)00009-1 Occurrence Handle12547428

    Article  PubMed  Google Scholar 

  13. M. Mann S. E. Ong M. Gronborg H. Steen O. N. Jensen A. Pandey (2002) ArticleTitleAnalysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome Trends Biotechnol. 20 261–268 Occurrence Handle10.1016/S0167-7799(02)01944-3 Occurrence Handle12007495

    Article  PubMed  Google Scholar 

  14. G. R. Guy R. Philip Y. H. Tan (1994) ArticleTitleAnalysis of cellular phosphoproteins by two-dimensional gel electrophoresis: applications for cell signaling in normal and cancer cells Electrophoresis 15 417–440 Occurrence Handle10.1002/elps.1150150160 Occurrence Handle8055870

    Article  PubMed  Google Scholar 

  15. V. W. Hu D. S. Heikka (2000) ArticleTitleRadiolabeling revisited: metabolic labeling with (35)S-methionine inhibits cell cycle progression proliferation, and survival FASEB J. 14 448–454 Occurrence Handle10698959

    PubMed  Google Scholar 

  16. J. Yeargin M. Haas (1995) ArticleTitleElevated levels of wild-type p53 induced by radiolabeling of cells leads to apoptosis or sustained growth arrest Curr. Biol. 5 423–431 Occurrence Handle10.1016/S0960-9822(95)00083-2 Occurrence Handle7627557

    Article  PubMed  Google Scholar 

  17. V. W. Hu D. S. Heikka P. B. Dieffenbach L. Ha (2001) ArticleTitleMetabolic radiolabeling: experimental tool or Trojan horse? (35)S-Methionine induces DNA fragmentation and p53-dependent ROS production FASEB J. 15 1562–1568 Occurrence Handle10.1096/fj.01-0102com Occurrence Handle11427488

    Article  PubMed  Google Scholar 

  18. H. Towbin T. Staehelin J. Gordon (1979) ArticleTitleElectrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications Proc. Natl. Acad. Sci. USA 76 4350–4354 Occurrence Handle388439

    PubMed  Google Scholar 

  19. B. Magi L. Bini B. Marzocchi S. Liberatori R. Raggiaschi V. Pallini (1999) ArticleTitleImmunoaffinity identification of 2-DE separated proteins Methods Mol. Biol. 112 431–443 Occurrence Handle10027268

    PubMed  Google Scholar 

  20. H. Kaufmann J. E. Bailey M. Fussenegger (2001) ArticleTitleUse of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis Proteomics 1 194–199 Occurrence Handle10.1002/1615-9861(200102)1:2<194::AID-PROT194>3.3.CO;2-B Occurrence Handle11680866

    Article  PubMed  Google Scholar 

  21. G. Buonocore S. Liberatori L. Bini O. P. Mishra M. Delivoria-Papadopoulos V. Pallini R. Bracci (1999) ArticleTitleHypoxic response of synaptosomal proteins in term guinea pig fetuses J. Neurochem. 73 2139–2148 Occurrence Handle10537074

    PubMed  Google Scholar 

  22. M. Grønborg T. Z. Kristiansen A. Stensballe J. S. Andersen O. Ohara M. Mann O. N. Jensen A. Pandey (2002) ArticleTitleA mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, , Frigg, as a protein kinase A substrate Mol. Cell. Proteomics 1 517–527 Occurrence Handle10.1074/mcp.M200010-MCP200 Occurrence Handle12239280

    Article  PubMed  Google Scholar 

  23. J. Godovac-Zimmermann V. Soskic S. Poznanovic F. Brianza (1999) ArticleTitleFunctional proteomics of signal transduction by membrane receptors Electrophoresis 20 952–961 Occurrence Handle10.1002/(SICI)1522-2683(19990101)20:4/5<952::AID-ELPS952>3.0.CO;2-A Occurrence Handle10344271

    Article  PubMed  Google Scholar 

  24. V. Soskic M. Gorlach S. Poznanovic F. D. Boehmer J. Godovac-Zimmermann (1999) ArticleTitleFunctional proteomics analysis of signal transduction pathways of the platelet-derived growth factor beta receptor Biochemistry 38 1757–1764 Occurrence Handle10.1021/bi982093r Occurrence Handle10026255

    Article  PubMed  Google Scholar 

  25. D. S. Gembitsky K. Lawlor A. Jacovina M. Yaneva P. Tempst (2004) ArticleTitleA prototype antibody microarray platform to monitor changes in protein tyrosine phosphorylation Mol. Cell. Proteomics 3 1102–1118 Occurrence Handle10.1074/mcp.M400075-MCP200 Occurrence Handle15358805

    Article  PubMed  Google Scholar 

  26. I. Debruyne (1983) ArticleTitleStaining of alkali-labile phosphoproteins and alkaline phosphatases on polyacrylamide gels. Anal. Biochem. 133 110–115 Occurrence Handle10.1016/0003-2697(83)90229-4 Occurrence Handle6195937

    Article  PubMed  Google Scholar 

  27. J. A. Cutting T. F. Roth (1973) ArticleTitleStaining of phospho-proteins on acrylamide gel electropherograms Anal. Biochem. 54 386–394 Occurrence Handle10.1016/0003-2697(73)90367-9 Occurrence Handle4125088

    Article  PubMed  Google Scholar 

  28. T. H. Steinberg B. J. Agnew K. R. Gee W. Y. Leung T. Goodman B. Schulenberg J. Hendrickson J. M. Beechem R. P. Haugland W. F. Patton (2003) ArticleTitleGlobal quantitative phosphoprotein analysis using Multiplexed Proteomics technology Proteomics 3 1128–1144 Occurrence Handle10.1002/pmic.200300434 Occurrence Handle12872214

    Article  PubMed  Google Scholar 

  29. B. Schulenberg R. Aggeler J. M. Beechem R. A. Capaldi W. F. Patton (2003) ArticleTitleAnalysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye J.␣Biol. Chem. 278 27251–27255 Occurrence Handle10.1074/jbc.C300189200 Occurrence Handle12759343

    Article  PubMed  Google Scholar 

  30. L. D. Luo P. J. Wirth (1993) ArticleTitleConsecutive silver staining and autoradiography of 35S and 32P-labeled cellular proteins: application for the analysis of signal transducing pathways Electrophoresis 14 127–136 Occurrence Handle10.1002/elps.1150140121 Occurrence Handle8462506

    Article  PubMed  Google Scholar 

  31. A. Yamagata D. B. Kristensen Y. Takeda Y. Miyamoto K. Okada M. Inamatsu K. Yoshizato (2002) ArticleTitleMapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase Proteomics 2 1267–1276 Occurrence Handle10.1002/1615-9861(200209)2:9<1267::AID-PROT1267>3.0.CO;2-R Occurrence Handle12362345

    Article  PubMed  Google Scholar 

  32. Raggiaschi R., Lorenzetto C., Diodato E., Caricasole A., Gotta S., and Terstappen G. C. (2005) in press.

  33. J. Porath J. Carlsson I. Olsson G. Belfrage (1975) ArticleTitleMetal chelate affinity chromatography, a new approach to protein fractionation Nature 258 598–599 Occurrence Handle10.1038/258598a0 Occurrence Handle1678

    Article  PubMed  Google Scholar 

  34. D. C. Neville C. R. Rozanas E. M. Price D. B. Gruis A. S. Verkman R. R. Townsend (1997) ArticleTitleEvidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry Protein Sci. 6 2436–2445 Occurrence Handle9385646

    PubMed  Google Scholar 

  35. S. B. Ficarro M. L. McCleland P. T. Stukenberg D. J. Burke M. M. Ross J. Shabanowitz D. F. Hunt F. M. White (2002) ArticleTitlePhosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae Nat. Biotechnol. 20 301–305 Occurrence Handle10.1038/nbt0302-301 Occurrence Handle11875433

    Article  PubMed  Google Scholar 

  36. N. Imam-Sghiouar R. Joubert-Caron M. Caron (2005) ArticleTitleApplication of metal-chelate affinity chromatography to the study of the phosphoproteome Amino Acids 28 105–109 Occurrence Handle10.1007/s00726-004-0130-4 Occurrence Handle15645166

    Article  PubMed  Google Scholar 

  37. C. Stannard V. Soskic J. Godovac-Zimmermann (2003) ArticleTitleRapid changes in the phosphoproteome show diverse cellular responses following stimulation of human lung fibroblasts with endothelin−1 Biochemistry 42 13919–13928 Occurrence Handle10.1021/bi035414u Occurrence Handle14636060

    Article  PubMed  Google Scholar 

  38. B. Blagoev S. E. Ong I. Kratchmarova M. Mann (2004) ArticleTitleTemporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics Nat. Biotechnol. 22 1139–1145 Occurrence Handle10.1038/nbt1005 Occurrence Handle15314609

    Article  PubMed  Google Scholar 

  39. S. E. Ong B. Blagoev I. Kratchmarova D. B. Kristensen H. Steen A. Pandey M. Mann (2002) ArticleTitleStable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics Mol. Cell. Proteomics 1 376–386 Occurrence Handle10.1074/mcp.M200025-MCP200 Occurrence Handle12118079

    Article  PubMed  Google Scholar 

  40. M. J. Huddleston R. S. Annan M. F. Bean S. A. Carr (1993) J. Am. Soc. Mass Spectrom. 4 710–717 Occurrence Handle10.1016/1044-0305(93)80049-5

    Article  Google Scholar 

  41. S. A. Carr M. J. Huddleston R. S. Annan (1996) ArticleTitleSelective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry Anal. Biochem. 239 180–192 Occurrence Handle10.1006/abio.1996.0313 Occurrence Handle8811904

    Article  PubMed  Google Scholar 

  42. H. Steen B. Kuster M. Fernandez A. Pandey M. Mann (2001) ArticleTitleDetection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode Anal.Chem. 73 1440–1448 Occurrence Handle10.1021/ac001318c Occurrence Handle11321292

    Article  PubMed  Google Scholar 

  43. T. S. Nuhse A. Stensballe O. N. Jensen S. C. Peck (2003) ArticleTitleLarge-scale Analysis of In Vivo Phosphorylated Membrane Proteins by Immobilized Metal Ion Affinity Chromatography and Mass Spectrometry Mol. Cell. Proteomics 2 1234–1243 Occurrence Handle10.1074/mcp.T300006-MCP200 Occurrence Handle14506206

    Article  PubMed  Google Scholar 

  44. S. B. Ficarro A. R. Salomon L. M. Brill D. E. Mason M. Stettler-Gill A. Brock E. C. Peters (2005) ArticleTitleAutomated immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sites Rapid Commun. Mass Spectrom. 19 57–71 Occurrence Handle10.1002/rcm.1746 Occurrence Handle15570572

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Raggiaschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raggiaschi, R., Gotta, S. & Terstappen, G.C. Phosphoproteome Analysis. Biosci Rep 25, 33–44 (2005). https://doi.org/10.1007/s10540-005-2846-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10540-005-2846-0

Key Words

Navigation