Skip to main content

A Practical Recipe to Survey Phosphoproteomes

  • Protocol
  • First Online:
Shotgun Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1156))

Abstract

The field of cellular signaling is fueled by the discovery of novel protein phosphorylation events. Phosphoproteomics focuses on the large-scale identification and characterization of serine, threonine, and tyrosine phosphorylation of proteins. Phosphopeptide enrichment followed by mass spectrometry has emerged as the most powerful technique for unbiased, discovery-driven analysis by offering high sensitivity, resolution, and speed. Methods for mass spectrometry-based phosphoproteomics analysis have improved substantially over the last decade, making the discipline more approachable to the broader scientific community. Herein we describe the status of the field of phosphoproteomics and provide a robust workflow covering the major aspects of large-scale phosphorylation analysis from phosphopeptide enrichment via IMAC to data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bodenmiller B, Wanka S, Kraft C et al (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 3:rs4

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682–1686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 4:rs5

    Article  CAS  PubMed  Google Scholar 

  6. Yu Y, Yoon S-O, Poulogiannis G et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322–1326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hsu PP, Kang SA, Rameseder J et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317–1322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cutillas PR, Khwaja A, Graupera M, Pearce W, Gharbi S, Waterfield M, Vanhaesebroeck B (2006) Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry. Proc Natl Acad Sci U S A 103:8959–8964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Yu Y, Anjum R, Kubota K, Rush J, Villen J, Gygi SP (2009) A site-specific, multiplexed kinase activity assay using stable-isotope dilution and high-resolution mass spectrometry. Proc Natl Acad Sci U S A 106:11606–11611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kubota K, Anjum R, Yu Y et al (2009) Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nat Biotechnol 27:933–940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Xue L, Wang W-H, Iliuk A, Hu L, Galan JA, Yu S, Hans M, Geahlen RL, Tao WA (2012) Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates. Proc Natl Acad Sci U S A 109:5615–5620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wu R, Haas W, Dephoure N, Huttlin EL, Zhai B, Sowa ME, Gygi SP (2011) A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods 8:677–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3

    Article  PubMed  Google Scholar 

  14. Humphrey SJ, Yang G, Yang P, Fazakerley DJ (2013) Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab 17:1009–1020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  CAS  PubMed  Google Scholar 

  16. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha X-M, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101

    Article  CAS  PubMed  Google Scholar 

  17. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154:250–254

    Article  CAS  PubMed  Google Scholar 

  18. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    Article  CAS  PubMed  Google Scholar 

  19. Sano A, Nakamura H (2004) Titania as a chemo-affinity support for the column-switching HPLC analysis of phosphopeptides: application to the characterization of phosphorylation sites in proteins by combination with protease digestion and electrospray ionization mass spectrometry. Anal Sci 20: 861–864

    Article  CAS  PubMed  Google Scholar 

  20. Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  CAS  PubMed  Google Scholar 

  21. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101:12130–12135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, Jensen ON (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4:310–327

    Article  CAS  PubMed  Google Scholar 

  23. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  PubMed  Google Scholar 

  24. Villen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104: 1488–1493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Villen J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3:1630–1638

    Article  PubMed Central  PubMed  Google Scholar 

  26. Alpert AJ (2008) Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem 80:62–76

    Article  CAS  PubMed  Google Scholar 

  27. Swaney DL, Wenger CD, Coon JJ (2010) Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9:1323–1329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76:3590–3598

    Article  CAS  PubMed  Google Scholar 

  29. Villen J, Beausoleil SA, Gygi SP (2008) Evaluation of the utility of neutral-loss-dependent MS3 strategies in large-scale phosphorylation analysis. Proteomics 8:4444–4452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JEP, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 104:2193–2198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nagaraj N, D'Souza RCJ, Cox J, Olsen JV, Mann M (2010) Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. J Proteome Res 9:6786–6794

    Article  CAS  PubMed  Google Scholar 

  33. Jedrychowski MP, Huttlin EL, Haas W, Sowa ME, Rad R, Gygi SP (2011) Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 10:M111.009910

    Article  PubMed Central  PubMed  Google Scholar 

  34. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292

    Article  CAS  PubMed  Google Scholar 

  35. Taus T, Köcher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10:5354–5362

    Article  CAS  PubMed  Google Scholar 

  36. Fermin D, Walmsley SJ, Gingras A-C, Choi H, Nesvizhskii AI (2013) LuciPHOr: algorithm for phosphorylation site localization with false localization rate estimation using target-decoy approach. Mol Cell Proteomics. doi:10.1074/mcp.M113.028928

    PubMed  Google Scholar 

  37. Ficarro SB, Adelmant G, Tomar MN, Zhang Y, Cheng VJ, Marto JA (2009) Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal Chem 81:4566–4575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  PubMed  Google Scholar 

  39. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  40. Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3:1234–1242

    Article  CAS  PubMed  Google Scholar 

  41. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964

    Article  CAS  PubMed  Google Scholar 

  42. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  PubMed  Google Scholar 

  43. Bailey CM, Sweet SMM, Cunningham DL, Zeller M, Heath JK, Cooper HJ (2009) SLoMo: automated site localization of modifications from ETD/ECD mass spectra. J Proteome Res 8:1965–1971

    Article  CAS  PubMed  Google Scholar 

  44. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  45. Searle BC (2010) Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10:1265–1269

    Article  CAS  PubMed  Google Scholar 

  46. Dephoure N, Gygi SP (2011) A solid phase extraction-based platform for rapid phosphoproteomic analysis. Methods 54:379–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Danielle Swaney, Ricard Rodriguez-Mias, and Daniel Hernandez for their helpful advice. This work was supported in part by NIH/NCI grant R00CA140789 and an Ellison Medical Foundation New Scholar Award (to J.V.). W.C.E. is a recipient of an NSF Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Villén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Edelman, W.C., Haas, K.M., Hsu, J.I., Lawrence, R.T., Villén, J. (2014). A Practical Recipe to Survey Phosphoproteomes. In: Martins-de-Souza, D. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 1156. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0685-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0685-7_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0684-0

  • Online ISBN: 978-1-4939-0685-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics