Skip to main content
Log in

Discovery of Some of the Biological Effects of Nitric Oxide and its Role in Cell Signaling

  • Nobel Lecture
  • Published:
Bioscience Reports

The role of nitric oxide in cellular signaling in the past 22 years has become one of the most rapidly growing areas in biology with more than 20,000 publications to date. Nitric oxide is a gas and free radical with an unshared electron that can regulate an ever-growing list of biological processes. In many instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis from GTP. However, the list of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. For example, nitric oxide can interact with transition metals such as iron, thiol groups, other free radicals, oxygen, superoxide anion, unsaturated fatty acids and other molecules. Some of these reactions result in the oxidation of nitric oxide to nitrite and nitrate to terminate its effect, while other reactions can lead to altered protein structure, function, and/or catalytic capacity. These diverse effects of nitric oxide that are either cyclic GMP dependent or independent can alter and regulate important physiological and biochemical events in cell regulation and function. Nitric oxide can function as an intracellular messenger, an autacoid, a paracrine substance, a neurotransmitter, or as a hormone that can be carried to distant sites for effects. Thus, it is a unique simple molecule with an array of signaling functions. However, as with any messenger molecule, there can be too little or too much of the substance and pathological events result. Some of the methods to regulate either nitric oxide formation, metabolism, or function have been in clinical use for more than a century as with the use of organic nitrates and nitroglycerin in angina pectoris that was initiated in the 1870’s. Current and future research with nitric oxide and cyclic GMP will undoubtedly expand the clinicians’ therapeutic armamentarium to manage a number of important diseases by perturbing nitric oxide and cyclic GMP formation and metabolism. Such promise and expectations have obviously fueled the interests in these signaling molecules for a growing list of potential therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Hardman T. Beavo J. Gray T. Chrisman W. Patterson E. Sutherland (1971) ArticleTitleThe formation and metabolism of cyclic GMP Ann. N.Y. Acad. Sci 185 27–35 Occurrence Handle4330496

    PubMed  Google Scholar 

  • A. White (1975) ArticleTitleGuanylate cyclase activity in heart and lung Adv. Cyclic Nucl. Res 5 353–373

    Google Scholar 

  • M. Appleman W. Terasaki (1975) ArticleTitleRegulation of cyclic nucleotide phosphodiesterase Adv. Cyclic Nucl. Res 5 153–162

    Google Scholar 

  • P. Greengard (1975) ArticleTitleCyclic nucleotides, protein phosphorylation and neuronal function Adv. Cyclic Nucl. Res 5 585–602

    Google Scholar 

  • H. Kimura F. Murad (1974) ArticleTitleEvidence for two different forms of guanylate cyclase in rat heart J. Biol. Chem 249 6910–6919 Occurrence Handle4153733

    PubMed  Google Scholar 

  • H. Kimura F. Murad (1975) ArticleTitleTwo forms of guanylate cyclase in mammalian tissues and possible mechanisms for their regulation Metabolism 24 439–445 Occurrence Handle10.1016/0026-0495(75)90123-7 Occurrence Handle236425

    Article  PubMed  Google Scholar 

  • H. Kimura F. Murad (1975) ArticleTitleIncreased particulate and decreased soluble guanylate cyclase activity in regenerating liver, fetal liver, and hepatoma Proc. Nat. Acad. Sci 72 1965–1969 Occurrence Handle239404

    PubMed  Google Scholar 

  • S. A. Waldman F. Murad (1987) ArticleTitleCyclic GMP synthesis and function Pharm. Rev 39 163–196 Occurrence Handle2827195

    PubMed  Google Scholar 

  • Murad F. (1994) Cyclic GMP Synthesis, Metabolism and Function, in Adv, In Pharmacol. Vol. 26, Academic Press, pp. 1–335

  • F. Murad (1994) ArticleTitleThe role of nitric oxide in modulating guanylyl cyclase Neurotransmission X 1–4

    Google Scholar 

  • Ignarro, L. and Murad, F. (eds.), (1995) Nitric Oxide: Biochemistry, Molecular Biology, and Therapeutic Implications. Advances in Pharmacology, Vol. 34 (Academic Press), pp. 1–516

  • M. Chinkers D. Garbers (1991) ArticleTitleSignal Transduction by guanylyl cyclase Ann. Rev. Biochem 60 553–575

    Google Scholar 

  • D. Garbers et al. (1988) ArticleTitleThe membrane form of guanylate cyclase Cold Spring Harbor Symp. Quart. Biol 53 993–1003

    Google Scholar 

  • H. Kimura C. K. Mittal F. Murad (1975) ArticleTitleActivation of guanylate cyclase from rat liver and other tissues with sodium azide J. Biol. Chem 250 8016–8022 Occurrence Handle240848

    PubMed  Google Scholar 

  • C. K. Mittal H. Kimura F. Murad (1975) ArticleTitleRequirement for a macromolecular factor for sodium azide activation of guanylate cyclase J. Cyclic Nucl. Res 1 261–269

    Google Scholar 

  • H. Kimura C. K. Mittal F. Murad (1975) ArticleTitleIncreases in cyclic GMP levels in brain and liver with sodium azide, an activator of guanylate cyclase Nature 257 700–702 Occurrence Handle241939

    PubMed  Google Scholar 

  • H. Kimura C. K. Mittal F. Murad (1976) ArticleTitleAppearance of magnesium guanylate cyclase activity in rat liver with sodium-azide activation J. Biol. Chem 251 7769–7773 Occurrence Handle12177

    PubMed  Google Scholar 

  • C. K. Mittal H. Kimura F. Murad (1977) ArticleTitlePurification and properties of a protein required for sodium azide activation of guanylate cyclase J. Biol. Chem 252 4348–4390

    Google Scholar 

  • F. Murad C. K. Mittal W. P. Arnold S. Katsuki H. Kimura (1978) ArticleTitleGuanylate cyclase: Activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin Adv. Cyclic Nucl. Res 9 145–158

    Google Scholar 

  • F. Murad C. K. Mittal W. P. Arnold K. Ichihara E. Braughler M. El-Zayat (1978) Properties and regulation of guanylate cyclase: Activation by azide, nitro compounds and hydroxyl radical and effects of heme containing proteins. Proc. of the NATO Adv. Study Inst. on Cyclic Nucleotides, Italy, 1977 G. Folca R. Paoletti (Eds) Molecular Biology and Pharmacology of Cyclic Nucleotides Elsevier Amsterdam 33–42

    Google Scholar 

  • Murad, F., Mittal, C. K., Arnold, W. P., and Braughler, J. M. (1978) Effect of nitro-compound smooth muscle relaxants and other materials on cyclic GMP metabolism. Proc. of the 7th International Congress of Pharmacology, Paris, France, July, 1978, in: Advances in Pharmacology and Therapeutics, Vol. 3 Ions, Cyclic Nucleotides, Cholinergy (J. C. Stocklet, ed.), Pergamon Press, New York, pp. 123–132

  • S. Katsuki W. Arnold C. K. Mittal F. Murad (1977) ArticleTitleStimulation of guanylate cyclase by sodium nitroprusside,, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine J. Cyclic Nucl. Res 3 23–35

    Google Scholar 

  • Katsuki, S., Arnold, W. P., Mittal, C. K., and Murad, F. (1977) Stimulation of formation and accumulation of cyclic GMP by smooth muscle relaxing agents. Proc of the 2nd Japanese Cyclic Nucleotide Conference, July 7–9, pp. 44–50

  • S. Katsuki F. Murad (1977) ArticleTitleRegulation of cyclic 3′,5′-adnosine monophosphate and cyclic 3′,5′-guanosine monophosphate levels and contractility in bovine tracheal smooth muscle Mol. Pharmacol 13 330–341 Occurrence Handle16208

    PubMed  Google Scholar 

  • S. Katsuki W. P. Arnold F. Murad (1977) ArticleTitleEffect of sodium nitroprusside, nitroglycerin and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues J. Cyclic Nucl. Res 3 239–247

    Google Scholar 

  • F. Murad V. Manganiello M. Vaughan (1970) ArticleTitleEffects of guanosine 3′,5′-monophosphate on glycerol production and accumulation of adenosine 3′,5′-monophosphate during incubation of fat cells J. Biol. Chem 245 3352–3360 Occurrence Handle4318907

    PubMed  Google Scholar 

  • V. Manganiello F. Murad M. Vaughan (1971) ArticleTitleEffects of lipolytic and antilipolytic agents on cyclic 3′,5′-adenosine monophosphate in fat cells J. Biol. Chem 246 2195–2202 Occurrence Handle4324562

    PubMed  Google Scholar 

  • M. Vaughan F. Murad (1969) ArticleTitleAdenyl cyclase activity in particles from fat cells Biochemistry 8 3092–3099

    Google Scholar 

  • R. Furchgott J. Zarwodski (1980) ArticleTitleThe obligatory role of endothelial cells in the relaxation of arterial smooth muscle to acetylcholine Nature 288 373–376 Occurrence Handle10.1038/288373a0 Occurrence Handle6253831

    Article  PubMed  Google Scholar 

  • W. P. Arnold C. K. Mittal S. Katsuki F. Murad (1977) ArticleTitleNitric oxide activates guanylate cyclase and increases guanosine 3′, 5′-monophosphate levels in various tissue preparations Proc. Nat. Acad. Sci. USA 74 3203–3207 Occurrence Handle20623

    PubMed  Google Scholar 

  • J. M. Braughler C. K. Mittal F. Murad (1979) ArticleTitlePurification of soluble guanylate cyclase from rat liver Proc. Natl. Acad. Sci. USA 76 219–222

    Google Scholar 

  • R. M. Rapoport F. Murad (1983) ArticleTitleAgonist-induced endothelial-dependent relaxation in rat thoracic aorta may be mediated through cyclic GMP Circ. Res 52 352–357 Occurrence Handle6297832

    PubMed  Google Scholar 

  • R. M. Rapoport F. Murad (1983) ArticleTitleEndothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: Role for cyclic GMP J. Cyclic Nucl. and Protein Phosphor. Res 9 281–296

    Google Scholar 

  • R. M. Rapoport M. B Draznin F. Murad (1983) ArticleTitleEndothelium-dependent vasodilator- and nitrovasodilator-induced relaxation may be mediated through cyclic GMP formation and cyclic GMP-dependent protein phosphorylation Trans. Assoc. Am. Phys 96 19–30 Occurrence Handle6149646

    PubMed  Google Scholar 

  • R. M. Rapoport M. B. Draznin F. Murad (1983) ArticleTitleEndothelium dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation Nature 306 274–276 Occurrence Handle10.1038/306174a0 Occurrence Handle6316149

    Article  PubMed  Google Scholar 

  • R. R. Fiscus R. M. Rapoport F. Murad (1983) ArticleTitleEndothelium-dependent and nitrovasodilator induced activation of cyclic GMP-dependent protein kinase in rat aorta J. Cyclic and Nucl. Protein Phosphor. Res 9 415–425

    Google Scholar 

  • R. M. Rapoport F. Murad (1984) ArticleTitleEffect of cyanide on nitrovasodilator-induced relaxation, cyclic GMP accumulation and guanylate cyclase activation in rat aorta Eur. J. Pharm 104 61–70 Occurrence Handle10.1016/0014-2999(84)90369-8

    Article  Google Scholar 

  • R. M. Rapoport M. Draznin F. Murad (1982) ArticleTitleSodium nitroprusside-induced protein phosphorylation in intact rat aorta is mimicked by 8-bromo-cyclic GMP Proc. Nat. Acad. Sci. USA 79 6470–6474

    Google Scholar 

  • M. Hirata K. Kohse C. H. Chang T. Ikebe F. Murad (1990) ArticleTitleMechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells J. Biol. Chem 265 1268–1273 Occurrence Handle2153123

    PubMed  Google Scholar 

  • F. Murad (1986) ArticleTitleCyclic guanosine monophosphate as a mediator of vasodilation J. Clin. Invest 78 1–5 Occurrence Handle2873150

    PubMed  Google Scholar 

  • R. M. Winquist E. P. Faison S. A. Waldman K. Schwartz F. Murad R. M. Rapoport (1984) ArticleTitleAtrial natriuretic factor elicits an endothelium independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle Proc. Nat. Acad. Sci 81 7661–7664 Occurrence Handle6150486

    PubMed  Google Scholar 

  • S. A. Waldman R. M. Rapoport F. Murad (1984) ArticleTitleAtrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues J. Biol. Chem 259 14332–14334 Occurrence Handle6150043

    PubMed  Google Scholar 

  • D. C. Leitman C. R. Molina S. A. Waldman F. Murad (1988) ArticleTitleAtrial natriuretic peptide receptors and the guanylate cyclase-cyclic GMP system. Proc. of the UCLA Symposium on Atrial Natriuretic Factor in Biological and Molecular Aspects of Atrial Factors UCLA Symp. Mol. Cell. Biol 81 39–56

    Google Scholar 

  • S. A. Waldman F. Murad (1987) ArticleTitleCyclic GMP synthesis and function Pharm. Rev 39 163–196 Occurrence Handle2827195

    PubMed  Google Scholar 

  • T. Kuno et al. (1986) ArticleTitleCo-purification of an atrial natriuretic factor receptor and particulate guanylate and cyclase from rat lung J. Biol. Chem 261 5817–5823 Occurrence Handle2871018

    PubMed  Google Scholar 

  • D. L. Garbers (1991) ArticleTitleGuanyl cyclase linked receptors Pharmacol. Ther 50 337–345 Occurrence Handle10.1016/0163-7258(91)90049-R Occurrence Handle1684438

    Article  PubMed  Google Scholar 

  • T. Degucci M. Yoshiako (1982) ArticleTitlel-arginine identified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells J. Biol. Chem 257 10147 Occurrence Handle6125510

    PubMed  Google Scholar 

  • J. Hibbs R. Traintor Z. Vanin (1987) ArticleTitleMacrophage cytotoxicity. Role for 1-arginine derminase and imino nitrogen activation to nitrate Science 235 473 Occurrence Handle2432665

    PubMed  Google Scholar 

  • F. Murad (1988) ArticleTitleThe role of cyclic GMP in the mechanism of action of nitrovasodilators, endothelium-dependent agents and atrial natriuretic peptide Biochem. Soc. Trans 16 490–492 Occurrence Handle2850236

    PubMed  Google Scholar 

  • F. Murad D. Leitman S. Waldman C. H. Chang M. Hirata K. Kohse (1988) ArticleTitleEffects of nitrovasodilators, endothelium-dependent vasodilators and atrial peptides on cGMP Proc. Cold Spring Habor Symp. Quant. Biol., Signal Trans 53 1005–1009

    Google Scholar 

  • Murad, F. (1989) Modulation of the guanylate cyclase-cGMP system by vasodilators and the role of free radicals as second messengers. Proc of the NATO Advanced Studies Institute on Vascular Endothelium: Receptors and Transduction Mechanisms. Porto Carros, Greece, June, 1988, in Vascular Endothelium J. D. Catravas, C. N. Gillis and U. S. Ryan, eds., Plenum Pub. pp. 157–164

  • Murad, F. (1989) Mechanisms for hormonal regulation of the different isoforms of guanylate cyclase. Proc of the 40th Mosbach Colloquium on Molecular Mechanisms of Hormone Action (Y. Gehring, E. Helmreich and G. Schultz, eds.), Springer, Heidelberg, April 1989, pp. 186–194

  • D. Bredt S. Snyder (1990) ArticleTitleIsolation of nitric oxide synthase,, a calmodulin-requiring enzyme Proc. Nat. Acad. Sci. USA 87 682–685 Occurrence Handle1689048

    PubMed  Google Scholar 

  • L. Gorsky U. Förstermann K. Ishii F. Murad (1990) ArticleTitleProduction of an EDRF-like activity in the cytosol of N1E-115 neuroblastoma cells FASEB J 4 1494–1500 Occurrence Handle2155150

    PubMed  Google Scholar 

  • U. Förstermann K. Ishii L. D. Gorsky F. Murad (1989) ArticleTitleThe cytosol of N1E-115 neuroblastoma cells synthesizes and EDRF-like substance that relaxes rabbit aorta. Naunyn Schmiedbergs Arch. Pharmacol 340 771–774

    Google Scholar 

  • U. Förstermann et al. (1990) ArticleTitleHormone induced biosynthesis of Endothelium-derived relaxing factor-Nitric oxide-like material in N1E-115 neuroblastoma cells requires calcium and calmodulin Mol. Pharmacol 38 7–13 Occurrence Handle2370855

    PubMed  Google Scholar 

  • H. H. H. W. Schmidt et al. (1991) ArticleTitlePurification of a soluble isoform of guanylyl cyclase-activating factor synthase Proc. Nat. Acad. Sci 88 365–369 Occurrence Handle1703296

    PubMed  Google Scholar 

  • D. Stuehr H. Cho N. Kwon M. Weise C. Nathans (1991) ArticleTitlePurification and characterization of the cytokine-induced macrophage nitric oxide synthase Proc. Nat. Acad. Sci. USA 88 7773–7777 Occurrence Handle1715579

    PubMed  Google Scholar 

  • U. Förstermann H. H. H. W. Schmidt J. S. Pollock M. Heller F. Murad (1991) ArticleTitleEnzymes synthesizing guanylyl cyclase activating factor (GAF) in endothelial cells,, neuroblastoma cells and rat brain J. Cardiovasc. Pharmacol 17 IssueID3 557–564

    Google Scholar 

  • U. Förstermann et al. (1990) ArticleTitleSubcellular localization and regulation of the enzymes responsible for EDRF synthesis in endothelial cells and N1E-155 neuroblastoma cells Eur. J. Pharmacol 183 1625–1626 Occurrence Handle10.1016/0014-2999(90)91913-V

    Article  Google Scholar 

  • J. S. Pollock et al. (1991) ArticleTitlePurification and characterization of particulate EDRF synthase from cultured and native bovine aortic endothelial cells Proc. Nat. Acad. Sci. USA 88 10480–10484 Occurrence Handle1720542

    PubMed  Google Scholar 

  • U. Förstermann et al. (1991) ArticleTitleIsoforms of EDRF/NO synthase: Characterization and purification from different cell types Biochem. Pharmacol 42 1849–1857 Occurrence Handle10.1016/0006-2952(91)90581-O Occurrence Handle1720618

    Article  PubMed  Google Scholar 

  • M. Nakane J. A. Mitchell U. Förstermann F. Murad (1991) ArticleTitlePhosphorylation by calcium/calmodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthase Biochem. Biophys. Res. Com 180 1396–1402 Occurrence Handle1719982

    PubMed  Google Scholar 

  • J. Pollock V. Klinghofer U. Förstermann F. Murad (1992) ArticleTitleEndothelial nitric oxide synthase is myristylated FEBS. Lett 309 402–404 Occurrence Handle10.1016/0014-5793(92)80816-Y Occurrence Handle1381323

    Article  PubMed  Google Scholar 

  • L. J. Robinson L. Busconi T. Michel (1995) ArticleTitleAgonist-modulated palmitoylation of endothelial nitric oxide synthase J. Biol. Chem 270 995–998 Occurrence Handle10.1074/jbc.270.46.27403 Occurrence Handle7530714

    Article  PubMed  Google Scholar 

  • P. W. Shaul et al. (1996) ArticleTitleAcylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae J. Biol. Chem 271 6518–6522 Occurrence Handle10.1074/jbc.271.11.6518 Occurrence Handle8626455

    Article  PubMed  Google Scholar 

  • J. Xie P. Roddy T. Rife F. Murad A. Young (1995) ArticleTitleTwo closely linked but separate promoters for human neuronal nitric oxide synthase gene transcription Proc. Natl. Acad. Sci 92 1242–1246 Occurrence Handle7532307

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murad, F. Discovery of Some of the Biological Effects of Nitric Oxide and its Role in Cell Signaling. Biosci Rep 24, 452–474 (2004). https://doi.org/10.1007/s10540-005-2741-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10540-005-2741-8

Key words

Navigation