Skip to main content
Log in

Differential expression pattern of transcription factors across annual Medicago genotypes in response to salinity stress

  • Original Paper
  • Published:
Biologia Plantarum

Abstract

Plants respond differently to salinity stress due to their unique gene architectures. Among genes, transcription factors (TFs) regulate many physiological and biochemical processes by modulating the rate of transcription initiation of target genes. Modulation of TFs has been correlated to the salt adaptation of any given genotype. In order to identify the expression of eight TFs (belong to bHLH, CBF, MYB, WRKY, and Zpt2 families) in three annual Medicago genotypes (M. polymorpha cv. Ieze, M. laciniata cv. Shushtar, and M. laciniata cv. Gheshm) under salinity stress, the RT-qPCR analyses were performed. Attempts were also made to establish relationships between gene expression profiles and morpho-physiological traits in these genotypes. In response to salinity, cv. Ieze had minimal changes in biomass, the electrolyte leakage, H2O2 content, and the higher ratio of reduced to oxidized glutathione than the other genotypes. Furthermore, Ieze had lower accumulation of Na+ and less decrease in K+ content. Altogether, it is concluded that Ieze could be regarded as a salt tolerant genotype. Transcriptome profile showed considerable variation across Medicago genotypes and among plant tissues. Among five TFs, Zpt2-2 and CBF4 had higher expression in salt-tolerant genotypes suggesting these genes as good candidates in genetic improvement programs to produce stress-tolerant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EL:

electrolyte leakage

GSH:

reduced glutathione

GSSG:

oxidized glutathione

RT-qPCR:

reverse transcription quantitative polymerase chain reaction

TFs:

transcription factors

TGSH:

total glutathione

References

  • Alexieva, V., Sergiev, S., Karanov, E.: The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. — Plant Cell Environ. 24: 1337–1344, 2001.

    Article  CAS  Google Scholar 

  • Baloglu, M.C., Inal, B., Kavas, M., Unver, T.: Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species. — Gene 550: 117–122, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Becher, M., Talke, I.N., Krall, L., Kramer, U.: Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. — Plant J. 37: 251–268, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Besseau, S., Li, J., Palva, E.T.: WRKY54 and WRKY70 cooperate as negative regulators of leaf senescence in Arabidopsis thaliana. — J. exp. Bot. 63: 2667–2679, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook, D.T., Burden, R.S.: Lipids modulation of plasma membrane-bound ATPase. — Physiol. Plant. 78: 153–159, 1990.

    Article  Google Scholar 

  • Dash, S., Van Hemert, J., Hong, L., Wise, R.P., Dickerson, J.A.: Plexdb: gene expression resources for plants and plant pathogens. — Nucl. Acid Res. 40: 1194–1201, 2012.

    Article  Google Scholar 

  • De Haan, R.L., Sheaffer, C.C., Samac, D.A., Moynihan, J.M., Barnes, D.K.: Evaluation of annual Medicago for upper midwest agro-ecosystems. — J. Agron. Crop Sci. 188: 417–425, 2002.

    Article  Google Scholar 

  • De Lorenzo, L., Merchan, F., Blanchet, S., Megías, M., Frugier, F., Crespi, M., Sousa, C.: Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes. — Plant Physiol. 145: 1521–1532, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., Lepiniec, L.: MYB transcription factors in Arabidopsis. — Trends Plant Sci. 15: 573–581, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle, T.J., Hagen, G.: Auxin response factors. - Curr. Opin. Plant. Biol. 10: 453–460. 2007.

    Article  CAS  PubMed  Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water-culture method for growing plants without soil. — Circular Calif. Agr. Exp. Sta. 347: 32, 1950.

    Google Scholar 

  • Karami, M., Rafiei, F., Shiran, B., Khodambashi, M.: Comparative response of annual Medicago spp. to salinity. — Russ. J. Plant Physiol. 62: 617–624, 2015.

    Article  CAS  Google Scholar 

  • Kodiara. K.S., Qin, F., Tran, L.F., Maruyama, K., Kidokoro, S., Fujita, Y., Yamaguchi-Shinozaki, K.: Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions — Plant Physiol. 157: 742–756. 2011.

    Article  Google Scholar 

  • Li, J., Brader, G., Kariola, T., Palva, E.T.: WRKY70 modulates the selection of signaling pathways in plant defense. — Plant J. 46: 477–491, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Su, Z., Dong, J., Wang, T.: An expression database for roots of the model legume Medicago truncatula under salt stress. — BMC Genomic 11: 517–525, 2009.

    Article  Google Scholar 

  • Li, D., Zhang, Y., Hu, X., Shen, X., Ma, L., Su, Z., Dong, J.: Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. — BMC Plant Biol. 11: 109–128, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Besseau, S., Petri, Toronen, P., Sipari, N., Kollist, H., Holm, L., Tapio Palva, E.: Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. — New Phytol. 200: 457–472, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindemose, S., O’Shea, C., Jensen, M. K., Skriver, K.: Structure, function and networks of transcription factors involved in abiotic stress responses. — Int. J. mol. Sci. 14: 5842–5878, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Pérez, L., Martínez-Ballesta, M.D.C., Maurel, C., Carvajal, M.: Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. — Phytochemistry 70: 492–500, 2009.

    Article  PubMed  Google Scholar 

  • Mansour, M.M.F.: Plasma membrane permeability as an indicator of salt tolerance in plants. — Biol. Plant. 57: 1–10, 2013.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F., Salama, K.H.A.: Cellular basis of salinity tolerance in plants. — Environ. exp. Bot. 52: 113–122, 2004.

    Article  CAS  Google Scholar 

  • May, M.J., Leaver, C.J.: Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension culture. — Plant Physiol. 103: 157–166, 1993.

    Article  Google Scholar 

  • Merchan, F., De Lorenzo, L., Rizzo, S.G., Niebel, A., Manyani, H., Frugier, F., Crespi, M.: Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. — Plant Cell 51: 1–17, 2007.

    CAS  Google Scholar 

  • Mittler, R., Kim, Y., Song, L., Coutu, J., Ciftci-Yilmaz, S., Lee, H., Stevenson, B., Zhu, J.K.: Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. — FEBS Lett. 580: 6537–6542, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittova, V., Tal, M., Volokita, M., Guy, M.: Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. — Plant Cell Environ. 26: 845–856, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R.: Plant salt tolerance. - In: Sunkar, R. (ed.): Methods in Molecular Biology. Pp. 25–38. Springer, Berlin 2010.

    Google Scholar 

  • Polle, A., Rennenberg, H.: Field studies on Norway spruce trees at high altitudes. II. Defence systems against oxidative stress in needles. — New Phytol. 121: 635–642, 1992.

    Article  CAS  Google Scholar 

  • Rafiei, F., Torabi, Z., Ebrahimie, E.: Type A response regulators are involved in the plant-microbe interaction. — Plant Omics J. 8: 178–182, 2015.

    Google Scholar 

  • Rao, A., Ahmad, S.D., Sabir, S.M., Awan, S.I.: Potential antioxidant activities improve salt tolerance in ten varieties of wheat (Triticum aestivum L.). — Amer. J. Plant Sci. 4: 69–76, 2013.

    Article  Google Scholar 

  • Rushton, P.J., Somssich, I.E., Ringler, P., Shen, Q.J.: WRKY transcription factors. — Trends Plant Sci. 15: 247–258, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Saibo, N.J.M., Lourenco, T., Oliveira, M.M.: Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. — Ann. Bot. 103: 609–623, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Salentijn, E.M.J., Pereira, A., Angenent, G.C., Van der Linden, G.C., Krens, F., F., Smulders, M.J.M., Vosman, B.: Plant translational genomics: from model species to crops. — Mol. Breed. 20: 1–13, 2007.

    Article  Google Scholar 

  • Sanchez, D.H., Pieckenstain, F.L., Szymanski, J., Erban, A., Bromke, M., Hannah, M., Udvardi, M.K.: Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. — PloS ONE 6: e17094, 2011.

    Article  Google Scholar 

  • Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative CT method. — Nat. Protoc. 3: 1101–1108, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Sheaffer, C.C., Simmons, S.R., Schmitt, M.A.: Annual medic and berseem clover dry matter and nitrogen production in rotation with corn. — Agron. J. 93: 1080–1086, 2001.

    Article  Google Scholar 

  • Tausz, M., Sircelj, H., Grill, D.: The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? — J. exp. Bot. 55: 1955–1962, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Taji, T., Seki, M., Satou, M., Sakurai, T., Kobayashi, M., Ishiyama, K., Narusaka, Y., Narusaka, M., Zhu, J.K., Shinozaki, K.: Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. — Plant Physiol. 135: 1697–1709, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester, M., Davenport, R.: Na+ tolerance and Na+ transport in higher plants. — Ann. Bot. 91: 503–527, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tivoli, B., Baranger, A., Sivasithamparam, K., Barbetti, M.J.: Annual Medicago: from a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. — Ann. Bot. 98: 1117–1128, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilanova, S., Cañizares, J., Pascual, L., Blanca, J.M., Díez, M.J., Prohens, J., Picó, B.: Application of genomic tools in plant breeding. — Curr. Genomics 13: 179–195, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh, M.J., Delaney, R.H., Groose, R.W., Krall, J.M.: Performance of annual medic species (Medicago spp.) in Southeastern Wyoming. — Agron. J. 93: 1249–1256, 2001.

    Article  Google Scholar 

  • Wang, T.Z., Tian, Q.Y., Wang, B.L., Zhao, M.G., Zhang, W.H.: Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108. — BMC Plant Biol. 14: 122–130, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, M., Harada, E., Vess, C., Roepenack-Lahaye, E.V., Clemens, S.: Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. — Plant J. 37: 269–281, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Wilkings, O., Waldron, L., Nahal, H., Provart, N.J., Campbell, M.M.: Genotype and time of the day shape the Populus drought response. — Plant J. 60: 703–715, 2009.

    Article  Google Scholar 

  • Zahaf, O., Blanchet, S., De Zélicourt, A., Alunni, B., Plet, J., Laffont, C., de' Lorenzo, L., Imbeaud, S., Ichanté, J.L., Diet, A., Badri, M., Zabalza, A., Gonzalez, E.M., Delacroix, H., Gruber, V., Frugier, F., Crespi, M.: Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. — Mol. Plants 5: 1068–1081, 2012.

    Article  CAS  Google Scholar 

  • Zamani Babgohari, M., Niazi, A., Moghadam, A.A., Deihimi, T., Ebrahimie, E.: Genome-wide analysis of key salinitytolerance transporter (HKT1;5) in wheat and wild wheat relatives (A and D genomes). — In Vitro cell. dev. Biol. Plant. 49: 97–106, 2012.

    Article  Google Scholar 

  • Zang, X., Komatsu, S.: A proteomics approach for identifying osmotic-stress-related proteins in rice. — Phytochemistry 68: 426–437, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rafiei.

Additional information

Acknowledgements: This study was supported by Iran National Science Foundation (grant No. INSF 90006335) and in part by Shahrekord University. Authors gratefully thank Dr. Fariborz Khajali from Shahrekord University for help with English editing.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, F., Rafiei, F., Shabani, L. et al. Differential expression pattern of transcription factors across annual Medicago genotypes in response to salinity stress. Biol Plant 61, 227–234 (2017). https://doi.org/10.1007/s10535-016-0666-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0666-7

Additional key words

Navigation