Skip to main content
Log in

Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Gamma-aminobutyric acid (GABA) is a non-protein amino acid that accumulates in a number of plant species under various environmental stresses. In this paper, the ability of applied GABA for the alleviation of NaCl stress was investigated in view of growth parameters, gas exchange, photosynthetic pigments, chlorophyll fluorescence, activities of antioxidant enzymes, malondialdehyde (MDA) content, and electrolyte conductivity (REC) in wheat seedlings. Germination rate and shoot dry mass decreased with an increasing NaCl concentration and this decrease was less pronounced when 0.5 mM GABA was applied. In the NaCl-treated seedlings, exogenous GABA partially enhanced photosynthetic capacity and antioxidant enzyme activities and decreased MDA content and REC. Therefore, GABA reduced the impact of salinity on the wheat seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΦPSII :

actual photosystem II efficiency

CAT:

catalase, Chl-chlorophyll

ci :

intercellular CO2 concentration

E:

transpiration rate

EDTA:

ethylenediaminetetraacetic acid

Fm :

maximum fluorescence induction

Fv :

variable fluorecence

GABA:

γ-aminobutyric acid

gS :

stomatal conductance

MDA:

malondialdehyde

NPQ:

non-photochemical quenching

PN :

net photosynthesis rate

PS:

photosystem

Rc:

electric conductivity

REC:

relative electrolyte conductivity

ROS:

reactive oxygen species

SOD:

superoxide dismutase

WUE:

water use efficiency

References

  • Abogadallah, G.M.: Antioxidative defense under salt stress. — Plant Signal. Behav. 5: 369–374, 2011.

    Article  Google Scholar 

  • Allan W.L., Simpson J.P., Clark S.M., Shelp B.J.: Gammahydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. — J. exp. Bot. 59: 2555–2564, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–10, 1949.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arnon, D.I., Hoagland, D.R.: Crop production in artificial solutions and in soil with special reference to factors affecting yields and absorption of inorganic nutrients. — Soil Sci. 50: 463–484, 1940.

    CAS  Google Scholar 

  • Asada, K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. — Plant Physiol. 141: 391–396, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bajji, M., Lutts, S., Kinet, J.M.: Water deficit effect on solution contribution to osmotic adjustment as a function of leaf ageing in three durum wheat ( Triticum durum Desf.) cultivars performing differently in arid conditions. — Plant Sci. 160: 669–681, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Bouché, N., Fromm, H.: GABA in plants: just a metabolite? — Trends Plant Sci. 9: 110–115, 2004.

    Article  PubMed  Google Scholar 

  • Bown, A.W., Mac Gregor, K.B., Shelp, B.J.: Gammaaminobutyrate: defense against invertebrate pests? — Trends Plant Sci. 11: 424–427, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Breitkreuz, K.E., Shelp, B.J.: Subcellular compartmentation of the 4-aminobutyrate shunt in protoplasts from developing soybean cotyledons. — Plant Physiol. 108: 99–103, 1995.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Breitkreuz, K.E., Shelp, B.J., Fischer, W.N., Schwacke, R., Rentsch, D.: Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. — FEBS Lett. 450: 280–284, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Calatayud, A., Barreno, E.: Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments, and lipid peroxidation. — Plant Physiol. Biochem. 42: 549–555, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Cao, S.F., Cai, Y.T., Yang, Z.F., Zheng, Y.H.: MeJA induces chilling tolerance in loquat fruit by regulating proline and γ-aminobutyric acid contents. — Food Chem. 133: 1466–1470, 2012.

    Article  CAS  Google Scholar 

  • Carapito, R., Hatsch, D., Vorwerk, S., Petkovski, E., Jeltsch, J.M., Phalip, V.: Gene expression in Fusarium graminearum grown on plant cell wall. — Fungal Genet. Biol. 45: 738–748, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Cho, K., Shibato, J., Agrawal, G.K., Jung, Y.H., Kubo, A., Jwa, N.S., Tamogami, S., Satoh, K., Kikuchi, S., Higashi, T.: Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. — J. Proteome Res. 7: 2980–2998, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Chung, H.J., Jang, S.H., Cho, H.Y., Lim, S.T.: Effects of steeping and anaerobic treatment on GABA (γ-aminobutyric acid) content in germinated waxy hull-less barley. — LWT Food Sci. Technol. 42: 1712–1716, 2009.

    Article  CAS  Google Scholar 

  • Cuin, Y.A., Shabala, S.: Compatible solutes reduce ROSinduced potassium efflux in Arabidopsis roots. — Plant Cell Environ. 30: 875–885, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Debez, A., Koyro, H.W., Grignon, C., Abdelly, C., Huchzermeyer, B.: Relationship between the photosynthetic activity and the performance of Cakile maritime after longterm salt treatment. — Physiol. Plant. 133: 373–385, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Demidchik, V., Cuin, T.A., Svistunenko, D., Smith, S.J., Miller, A.J., Shabala, S., Sokolik, A., Yurin, V.: Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. — J. cell. Sci. 123: 1468–1479, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Sese, M.L., Tobita, S.: Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. — J. Plant Physiol. 157: 54–58, 2000.

    Article  CAS  Google Scholar 

  • Fait, A., Fromm, H., Walter, D., Galili, G., Fernie, A.R.: Highway or byway: the metabolic role of the GABA shunt in plants. — Trends Plant Sci. 13: 14–19, 2007.

    Article  PubMed  Google Scholar 

  • Flexas, J., Medrano, H.: Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. — Ann. Bot. 89: 183–189, 2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foyer, C.H., Noctor, G.: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. — Plant Cell 17: 1866–1875, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Havaux, M., Lutz, C., Grimm, B.: Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. — Plant Physiol. 132: 300–310, 2003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He, Y., Zhu, Z.J., Yang, J., Ni, X.L., Zhu, B.: Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. — Environ. exp. Bot. 66: 270–278, 2009.

    Article  CAS  Google Scholar 

  • Jiang, Q., Roche, D., Monaco, T.A., Hole, D.: Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. — Plant Biol. 8: 515–521, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Karaba, A., Dixit, S., Greco, R., Aharoni, A., Trijatmiko, K.R., Marsch-Martinez, N., Krishnan, A., Nataraja, K.N., Udayakumar, M., Pereira, A.: Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. — Proc. nat. Acad. Sci. USA 104: 15270–15275, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kathiresan, A., Miranda, J., Chinnappa, C.C., Reid, D.M.: Gamma-aminobutyric acid promotes stem elongation in Stellaria longipes: the role of ethylene. — Plant Growth Regul. 26: 131–37, 1998.

    Article  CAS  Google Scholar 

  • Kato-Noguchi, H., Ohashi, C.: Anoxic accumulation of amino acids in rice coleoptiles. — Environ. Control Biol. 43: 291–294, 2005.

    Article  Google Scholar 

  • Kazuhito, A., Fumio, T.: C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. — J. exp. Bot. 58: 2699–2707, 2007.

    Article  Google Scholar 

  • Kim, D.W., Shibato, J., Agrawal, G.K., Fujihara, S., Iwahashi, H., Kim, du H., Shim, I.S., Rakwal, R.: Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). — Mol. Cells 24: 45–59, 2007.

    CAS  PubMed  Google Scholar 

  • Kinnersley, A.M., Turano, F.J.: Gamma aminobutyric acid (GABA) and plant responses to stress. — Crit. Rev. Plant Sci. 19: 479–509, 2000.

    Article  CAS  Google Scholar 

  • Laurent, B., Zhentian, L., Marc, L., Seth, F., Masayuki, S.M.J., Sadowsky, L.W.S., Gary, S.: Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. — Plant Physiol. 153: 1808–1822, 2010.

    Article  Google Scholar 

  • Li, Y., Bai, Q.Y., Jin, X.J., Wen, H.B., Gu, Z.X.: Effects of cultivar and culture conditions on gamma-aminobutyric acid accumulation in germinated fava beans (Vicia faba L.). — J. Sci. Food Agr. 90: 52–57, 2010.

    Article  CAS  Google Scholar 

  • Liu, Y. D., Yin, Z.J., Yu, J.W., Li, J., Wei, H.L., Han, X.L., Shen, F.F.: Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. — Biol. Plant. 56: 237–246, 2012.

    Article  CAS  Google Scholar 

  • Lu, C., Qiu, N., Wang, B., Zhang, J.: Salinity treatment shows no effects on photosystem II photochemistry but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. — J. exp. Bot. 54: 851–860, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Lu, J., Li, X.N., Yang, Y.L., Jia, L.Y., You, J., Wang, W.R.: Effect of hydrogen peroxide on seedling growth and antioxidants in two wheat cultivars. — Biol. Plant. 57: 487–494, 2013.

    Article  CAS  Google Scholar 

  • Lutts, S., Kinet, J.M., Bouharmont, J.: Effect of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. — Plant Growth Regul. 19: 207–218, 1996.

    Article  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., James, R.A., Läuchli, A.: Approaches to increasing the salt tolerance of wheat and other cereals. — J. exp. Bot. 57: 1025–1043, 2005.

    Article  Google Scholar 

  • Naumann, J.C., Young, D.R., Anderson, J.E.: Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. — Physiol. Plant. 131: 422–433, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Nayyar, H.: γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. — J. Plant Growth Regul. 33: 408–419, 2014.

    Article  CAS  Google Scholar 

  • Netondo, G.W., Onyango, J.C., Beck, E.: Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. — Crop Sci. 44: 806–811, 2004.

    Article  Google Scholar 

  • Palanivelu, R., Brass, L., Edlund, A.F., Preuss, D.: Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. — Cell 114: 47–59, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Redondo-Gómez, S., Mateos-Naranjo, E., Davy, A.J., Fernandez-Munoz, F., Castellanos, E.M., Luque, T., Figueroa, M.E.: Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. — Ann. Bot. 100: 555–563, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  • Renault, H., Roussel, V., Amrani, A.E.I., Arzel, M., Renault, D., Bouchereau, A., Deleu, C.: The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. — BMC Plant Biol. 10: 20, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  • Reyes-García, M.G., Hernández-Hernández F., García-Tamayo F.: Gamma-aminobutyric acid (GABA) increases in vitro germ-tube formation and phospholipase B1 mRNA expression in Candida albicans. — Mycoscience 53: 36–39, 2012.

    Article  Google Scholar 

  • Roberts, M.R.: Does GABA act as a signal in plants? — Plant Signal. Behav. 5: 408–409, 2007.

    Article  Google Scholar 

  • Sara, P., Armelle, V., Samue, M., Magali, N., Denis, F., Solange, M.: A conserved mechanism of GABA binding and antagonism is revealed by structure-function analysis of the periplasmic binding protein Atu2422 in Agrobacterium tumefaciens. — J. biol. Chem. 285: 30294–30303, 2010.

    Article  Google Scholar 

  • Scandalios, J.G.: Oxygen stress and superoxide dismutases. — Plant Physiol. 101: 7–12, 1993.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shang, H.T., Cao, S.F., Yang, Z.F., Cai Y.T., Zheng, Y.H.: Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. — J. Agr. Food Chem. 59: 1264–1268, 2011.

    Article  CAS  Google Scholar 

  • Shelp, B.J., Bown A.W., Faure D.: Extracellular γ- aminobutyrate mediates communication between plants and other organisms. — Plant Physiol. 142:1350–1352, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shelp, B.J., Bozzo, G.G., Trobacher, C.P., Chiu G., Bajwa, V.S.: Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants. I. Pathway structure. — Botany 90: 651–668, 2012.

    Article  CAS  Google Scholar 

  • Shi, S.Q., Shi, Z., Jiang, Z.P., Qi, L.W., Sun, X.M., Li, C.X., Liu, J.F., Xiao, W.F., Zhang, S.G.: Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. — Plant Cell Environ. 33: 149–162, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff, N., Cumbes, Q.J.: Hydroxyl radical scavenging activity of compatible solutes. — Phytochemistry 28: 1057–1060, 1989.

    Article  CAS  Google Scholar 

  • Smirnoff, N.: Antioxidant systems and plant response to the environment. — In: Smirnoff, N. (ed.): Environment and Plant Metabolism: Fexibility and Acclimation. Pp. 217–243. Bios Scientific Publishers, Oxford 1995.

    Google Scholar 

  • Song, H.M., Xu, X.B., Wang, H., Wang, H.Z., Tao, Y.Z.: Exogenous γ-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. — J. Sci. Food Agr. 90: 1410–1416, 2010.

    Article  CAS  Google Scholar 

  • Souza, R.P., Machado, E.C., Silva, J.A.B., Lagoa, A., Silveira, J.A.G.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. — Environ. exp. Bot. 51: 45–56, 2004.

    Article  CAS  Google Scholar 

  • Su, G.X., Bing, J., Yu, B.J., Zhang, W.H., Liu, Y.L.: Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. — Plant Physiol. Biochem. 45: 560–566, 2007.

    Article  Google Scholar 

  • Sulieman, S.: Does GABA increase the efficiency of symbiotic N2 fixation in legumes? — Plant Signal. Behav. 6: 32–36, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi, H., Matsumura, H., Kawai-Yamada, M., Uchimiya, H.: The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells. — Plant Signal. Behav. 3: 945–953, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tang, Z.C.: [Modern Experiment Procotols in Plant Physiology.] — Science Press, Beijing 1999. [In Chin.]

    Google Scholar 

  • Yamaguchi, T., Blumwald, E.: Developing salt-tolerant crop plants: challenges and opportunities. — Trends Plant Sci. 10: 615–620, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X.H., Liang, Z., Wen, X.G., Lu, C.M.: Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. — Plant mol. Biol. 66: 73–86, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Yan, C.Q., Cao, B.H., Xu, H.X., Chen, J.P., Jiang, D.A.: Some photosynthetic responses to salinity resistance are transferred into the somatic hybrid descendants from the wild soybean Glycine cyrtoloba ACC547. — Physiol. Plant. 129: 658–669, 2007.

    Article  Google Scholar 

  • Yu, G.H., Sun, M.X.: Deciphering the possible mechanism of GABA in tobacco pollen tube growth and guidance. — Plant Signal. Behav. 2: 393–395, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu, Z.J., Wei, G.Q., Li, J., Qian, Q.Q., Yu, J.Q.: Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). — Plant Sci. 167: 527–533, 2004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgement: This work was supported by the National Science Foundation of China (No. 30271242) and the foundation of the State Key Laboratory of Crop Biology (2014KF08).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M.F., Guo, S.J., Yang, X.H. et al. Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes. Biol Plant 60, 123–131 (2016). https://doi.org/10.1007/s10535-015-0559-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0559-1

Additional key words

Navigation