Skip to main content
Log in

γ-Aminobutyric Acid (GABA) Imparts Partial Protection from Heat Stress Injury to Rice Seedlings by Improving Leaf Turgor and Upregulating Osmoprotectants and Antioxidants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Four-day-old rice (Oryza sativa L.) seedlings were subjected to varying temperatures of 30/20, 35/25, and 42/37 °C [light/dark (15/9 h); light intensity: 350 μmol m−2 s−1, RH 65–70 %] in glass Petri dishes for 10 days in the absence (control) or the presence of γ-aminobutyric acid (GABA) 1 mM under the controlled conditions of a growth chamber. With rise in temperature, the length of both shoots and roots was inhibited severely and there was a marked decrease in survival, especially at 42/37 °C. Endogenous GABA content increased more than twofold in moderately stressed (MS) 35/25 °C plants, whereas it decreased sevenfold in severely stressed (SS) 42/37 °C plants compared to MS plants, and this decrease was associated with marked reduction in growth and survival. Exogenous application of GABA to the heat-stressed plants significantly improved growth as well as survival. It was linked to reduction in damage to membranes, improvement in cellular reducing ability, chlorophyll content, and photochemical efficiency in shoots. Relative leaf water content and stomatal conductance were also improved with the application of GABA and their improvement was related to increased accumulation of the osmolytes proline and trehalose. In the presence of GABA, the shoots suffered less oxidative damage in terms of malondialdehyde and hydrogen peroxide contents. The activities of enzymatic antioxidants such as superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase were severely inhibited in plants growing at 42/37 °C compared to those growing at 35/25 °C. The nonenzymatic antioxidants like ascorbate and glutathione followed a similar pattern. GABA-treated SS plants showed enhanced levels of enzymatic and nonenzymatic antioxidants compared to untreated controls. Thus, GABA appears to impart partial protection from heat stress to rice plants by elevating leaf turgor due to increased accumulation of osmolytes and reduction of oxidative damage by stimulation of antioxidants. These findings provided evidence about the involvement of GABA in governing heat sensitivity in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeselmani M, Deshmukh PS, Sairam RK (2009) High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes. Acta Agron Hung 57:1–14

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzyme in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Bartyzel I, Pelczar K, Pazkowski A (2003) Functioning of the gamma-aminobutyrate pathway in wheat seedlings affected by osmotic stress. Biol Plant 47:221–225

    Article  CAS  Google Scholar 

  • Bates LS, Woldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Beuve N, Rispail N, Laine P, Cliquet JB, Ourry A, Le Deunff E (2004) Putative role of γ-amino butyric acid (GABA) as a long distance signal in upregulation of nitrate uptake in Brassica napus L. Plant Cell Environ 27:1035–1046

    Article  CAS  Google Scholar 

  • Bor M, Seckin B, Ozgur R, Yilmaz O, Ozdemir F, Turkan I (2009) Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutyric acid levels of sesame (Sesamum indicum L.). Acta Physiol Plant 31:659–665

    Article  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  Google Scholar 

  • Brin M (1956) Transketolase: clinical aspects. Methods Enzymol 9:506–514

    Article  Google Scholar 

  • Camejo D, Torres W (2001) High temperature effect on tomato (Lycopersicon esculentum) pigment and protein content and cellular viability. Cultivos Trop 22:13–17

    Google Scholar 

  • Camejo D, Jimenez A, Alarcon JJ, Torres W, Gomez JM, Sevilla F (2006) Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol 33:177–187

    Article  CAS  Google Scholar 

  • Cao YY, Duan H, Yang LN, Wang ZQ, Zhou SC, Yang JC (2008) Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agron Sinica 34:2134–2142

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian M, Taheri A, Al-Yassin A, Benbelkacem A, Labdi M, Mimoun H, Nachit M (2010) Plant breeding and climate changes. J Agric Sci Camb 148:627–637

    Article  Google Scholar 

  • Change B, Maehly AC (1955) Assay of catalases and peroxidase. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Giannopolities CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  Google Scholar 

  • Gill S, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffth OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2 vinyl pyridine. Anal Biochem 106:207–212

    Article  Google Scholar 

  • Harborne JB (1997) Biochemical plant ecology. In: Dey DM, Harborne JB (eds) Plant biochemistry. Academic Press, New York, pp 503–516

    Chapter  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hofmann NR (2012) The plasma membrane as first responder to heat stresses. Plant Cell 21:2544

    Article  Google Scholar 

  • Jiang Y, Huang B (2001) Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41:436–442

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller C, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karl TR, Kukla G, Razuvayev VN, Changery MJ, Quayle RG, Heim RR, Easterling DR, Fu CB (1991) Global warming: evidence for asymmetric diurnal temperature change. Geophys Res Lett 18:2253–2256

    Article  Google Scholar 

  • Kathiresan A, Miranda J, Chinnappa CC, Reid DM (1998) γ-Aminobutyric acid promotes growth elongation in Stellaria longipes: the role of ethylene. Plant Growth Regul 26:131–137

    Article  CAS  Google Scholar 

  • Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P, Nayyar H (2011) Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol Mol Biol Plant 17:203–213

    Article  CAS  Google Scholar 

  • Kinnersley AM, Lin F (2000) Receptor modifiers indicate that γ-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. Plant Growth Regul 32:65–76

    Article  CAS  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma-aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Bains TS, Nayyar H (2011) Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 33:2091–2101

    Article  CAS  Google Scholar 

  • Liu X, Huang B (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci 40:503–510

    Article  CAS  Google Scholar 

  • Liu J, Xie J, Du J, Sun J, Bai X (2008) Effects of simultaneous drought and heat stress on Kentucky bluegrass. Sci Hortic 115:190–195

    Article  Google Scholar 

  • Locy RD, Wu SJ, Bisnette J, Barger TW, McNabb D, Zik M, Fromm H, Singh NK, Cherry JH (2000) The regulation of GABA accumulation by heat stress in Arabidopsis. In: Cherry JH, Locy RD, Rychter A (eds) Plant tolerance to abiotic stresses in agriculture: role of genetic engineering. NATO advanced research workshop series in cell biology. Kluwer Academic Publishers, Dordrecht, pp 39–53

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Morales D, Rodriguez P, Dell’amico J, Nicolas E, Torrecillas A, Sanchez-Blanco MJ (2003) High temperature pre-conditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203–208

    Article  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Murkowski A (2001) Heat stress and spermidine: effect on chlorophyll fluorescence in tomato plants. Biol Plant 44:53–57

    Article  CAS  Google Scholar 

  • Nagai T, Makino A (2009) Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant Cell Physiol 50:744–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    Article  CAS  Google Scholar 

  • Premchandra GS, Sameoka H, Ogata S (1990) Cell osmotic membrane-stability, an indication of drought tolerance, as affected by applied nitrogen in soil. J Agric Res 115:63–66

    Google Scholar 

  • Sairam RK, Srivastava GC (2000) Induction of oxidative stress and antioxidant activity by hydrogen peroxide treatment in tolerant and susceptible wheat genotypes. Biol Plant 43:381–386

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Saxena DC (2000) Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biol Plant 43:245–251

    Article  CAS  Google Scholar 

  • Saito T, Matsukura C, Sugiyama M, Watahiki A, Ohshima I et al (2008) Screening for γ-aminobutyric acid (GABA)-rich tomato varieties. J Jpn Soc Hortic Sci 77:242–250

    Article  CAS  Google Scholar 

  • Schoffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. RG Landes, Austin, pp 81–98

    Google Scholar 

  • Sharma SS, Dietz KJ (2005) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  Google Scholar 

  • Sheehy JE, Elmido A, Centeno G, Pablico P (2005) Searching for new plants for climate change. J Agric Meteorol 60:463–468

    Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  PubMed  Google Scholar 

  • Shirasawa K, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98:565–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sohn SO, Back K (2007) Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biol Plant 51:340–342

    Article  CAS  Google Scholar 

  • Song SQ, Lei YB, Tian XR (2005) Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds. Russ J Plant Physiol 52:793–800

    Article  CAS  Google Scholar 

  • Steponkus PL, Lanphear FO (1967) Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol 42:1423–1426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber (Cucumis sativus L) and wheat (Triticum aestivum L). Plant Physiol 117:851–858

    Article  CAS  Google Scholar 

  • Trevelyan WE, Harrison JS (1956) Studies on yeast metabolism. 1. The trehalose content of baker’s yeast during the anaerobic fermentation. Biochem J 62:177–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turano FJ, Thakkar SS, Fang T, Weisemann JM (1997) Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol 113:1329–1341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang WC, Nguyen HT (1989) Thermal stress evaluation of suspension cell cultures in winter wheat. Plant Cell Rep 8:108–111

    Article  CAS  PubMed  Google Scholar 

  • Willits DH, Peet MM (2001) Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: laboratory and greenhouse comparisons. J Am Soc Hortic Sci 126:188–194

    Google Scholar 

  • Xia QP, Gao HB, Li JR (2011) Effects of gamma-aminobutyric acid on the photosynthesis and chlorophyll fluorescence parameters of muskmelon seedlings under hypoxia stress. Ying Yong Sheng Tai Xue Bao 4:999–1006

    Google Scholar 

  • Xu S, Li J, Zhang X, Wei H, Cui L (2006) Effects of heat acclimation pre-treatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Yang A, Cao S, Yang Z, Cai Y, Zheng Y (2011) γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chem 129:1619–1622

    Article  CAS  Google Scholar 

  • Zou J, Liu C, Chen X (2011) Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep 30:2155–2156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Nayyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayyar, H., Kaur, R., Kaur, S. et al. γ-Aminobutyric Acid (GABA) Imparts Partial Protection from Heat Stress Injury to Rice Seedlings by Improving Leaf Turgor and Upregulating Osmoprotectants and Antioxidants. J Plant Growth Regul 33, 408–419 (2014). https://doi.org/10.1007/s00344-013-9389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9389-6

Keywords

Navigation