Skip to main content
Log in

Cell membrane integrity, callose accumulation, and root growth in aluminum-stressed sorghum seedlings

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Aluminum stress usually reduces plant root growth due to the accumulation of Al in specific zones of the root apex. The objectives of this study were to determine the localization of Al in the root apex of Sorghum bicolor (L.) Moech. and its effects on membrane integrity, callose accumulation, and root growth in selected cultivars. Seedlings were grown in a nutrient solution containing 0, 27, or 39 μM Al3+ for 24, 48, and 120 h. The Al stress significantly reduced root growth, especially after 48 and 120 h of exposure. A higher Al accumulation, determined by fluorescence microscopy after staining with a Morin dye, occurred in the root extension zone of the sensitive cultivar than in the tolerant cultivar. The membrane damage and callose accumulation were also higher in the sensitive than resistant cultivar. It was concluded that the Al stress significantly reduced root growth through the accumulation of Al in the root extension zone, callose accumulation, and impairment of plasma membrane integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

BIO-EARN:

Eastern African Regional Programme and Research Network for Biotechnology, Biosafety and Biotechnology Policy Development

ICRISAT:

International Crops Research Institute for the Semi-Arid Tropics

SIDA:

Swedish International Development Agency

References

  • Ahn, S.J., Matsumoto, H.: The role of the plasma membrane in the response of plant roots to aluminum toxicity. — Plant Signal. Behav. 1: 37–45, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvim, M.N., Ramos, F.T., Oliveira, D.C., Isaias, R.M.S., Franca, M.G.C.: Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings. — J. Biosci. 37: 1079–1088, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Baker, J.C., Mock, N.M.: An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. — Plant Cell Tissue Organ Cult. 39: 7–12, 1994.

    Article  Google Scholar 

  • Bhuja, P., McLachlan, K., Stephens, J., Taylor, G.: Accumulation of 1,3-beta-D-glucans, in response to aluminum and cytosolic calcium in Triticum aestivum. — Plant Cell Physiol. 45: 543–549, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Cartes, P., McManus, M., Wulff-Zottele, C., Leung, S., Gutiérrez-Moraga, A., Mora, M.D.L.: Differential superoxide dismutase expression in ryegrass cultivars in response to short term aluminium stress. — Plant Soil 350: 353–363, 2012.

    Article  CAS  Google Scholar 

  • Cheprot, R.K., Matonyei, T.K., Maritim, K.K., Were, B.A., Dangasuk, O.G., Onkware, A.O. Gudu, S.: Physiological characterization of Kenyan sorghum lines for tolerance to aluminium. — Int. J. nat. Sci. Res. 2: 59–71, 2014.

    Article  Google Scholar 

  • Garzón, T., Gunsé, B., Moreno, A.R., Tomos, A.D., Barceló, J., Poschenrieder, C.: Aluminium-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. — Plant Sci. 180: 709–715, 2011.

    Article  PubMed  Google Scholar 

  • Goncalves, J.F.D., Cambraia, J., Mosquim, P.R., Araujo, E.F.: Aluminum effect on organic acid production and accumulation in sorghum. — J. Plant Nutr. 28: 507–520, 2005.

    Article  CAS  Google Scholar 

  • Gunse, B., Poschenrieder, C., Barcelo, J.: Water transport properties of roots and root cortical cells in proton- and Alstressed maize varieties. — Plant Physiol. 113: 595–602, 1997.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Illéš, P., Schlicht, M., Pavlovkin, J., Lichtscheidl, I., Baluška, F., Ovečka, M.: Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production. — J. exp. Bot. 57: 4201–4213, 2006.

    Article  PubMed  Google Scholar 

  • Kaneko, M., Yoshimura, E., Nishizawa, N.K., Mori, S.: Time course study of aluminum-induced callose formation in barley roots as observed by digital microscopy and low-vacuum scanning electron microscopy. — Soil Sci. Plant Nutr. 45: 701–712, 1999.

    Article  CAS  Google Scholar 

  • Kochian, L., Piñeros, M., Hoekenga, O.: The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. — Plant Soil 274: 175–195, 2005.

    Article  CAS  Google Scholar 

  • Koehle, H., Jeblick, W., Poten, F., Blaschek, W., Kauss, H.: Chitosan-elicited callose synthesis in soybean (Glycine max) cultivar Harosoy-63 cells as a calcium-dependent process. — Plant Physiol. 77: 544–551, 1985.

    Article  CAS  Google Scholar 

  • Magalhaes, J.V., Garvin, D.F., Wang, Y., Sorrells, M.E., Klein, P.E., Schaffert, R.E., Li, L., Kochian, L.V.: Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. — Genetics 167: 1905–1914, 2004.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Magalhaes, J.V., Liu, J., Guimaraes, C.T., Lana, U.G., Alves, V.M., Wang, Y.H., Schaffert, R.E., Hoekenga, O.A., Pineros, M.A., Shaff, J.E., Klein, P.E., Carneiro, N.P., Coelho, C.M., Trick, H.N., Kochian, L.V.: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. — Nat. Genet. 39: 1156–1161, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Martins, N., Goncales, S., Romano, A.: Metabolism and aluminium accumulation in Plantago almogravensis and P. Algarbiensis in response to low pH and aluminium stress. — Biol. Plant. 57: 325–331, 2013.

    Article  CAS  Google Scholar 

  • Massot, N., Llugany, M., Poschenrieder, C., Barcelo, J.: Callose production as indicator of aluminum toxicity in bean cultivars. — J. Plant Nutr. 22: 1–10, 1999.

    Article  CAS  Google Scholar 

  • Narro, L.A., Arcos, A.L.: Genetics of aluminum-induced callose formation in maize roots, a selection trait for aluminum resistance. — Crop Sci. 50: 1848–1853, 2010.

    Article  CAS  Google Scholar 

  • Panda, S.K., Matsumoto, H.: Molecular physiology of aluminium toxicity and tolerance in plants. — Bot. Rev. 74: 326–347, 2007.

    Article  Google Scholar 

  • Peixoto, P.H.P., Cambraia, J., Sant’Anna, R., Mosquim, P.R., Moreira, M.A.: Aluminum effects on fatty acid composition and lipid peroxidation of a purified plasma membrane fraction of root apices of two sorghum cultivars. — J. Plant Nutr. 24: 1061–1070, 2001.

    Article  CAS  Google Scholar 

  • Pirselova, B., Matusikova, I.: Callose: the plant cell wall polysaccharide with multiple biological functions. — Acta Physiol. Plant. 35: 635–644, 2013.

    Article  CAS  Google Scholar 

  • Ringo, J.H., Mneney, E.E., Onkware, A.O., Were, B.A., Too, E.J., Owuoche, J.O., Gudu, S.O.: Tolerance to aluminium toxicity in Tanzanian sorghum genotypes. — Afr. Crop Sci. J. 18: 155–164, 2010.

    Google Scholar 

  • Silva, S., Rodriguez, E., Pinto-Carnide, O., Martins-Lopes, P., Matos, M., Guedes-Pinto, H., Santos, C.: Zonal responses of sensitive vs. tolerant wheat roots during Al exposure and recovery. — J. Plant Physiol. 169: 760–769, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru, M., Horst, W.J.: The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. — Plant Physiol. 116: 155–163, 1998.

    Article  CAS  PubMed Central  Google Scholar 

  • Sivaguru, M., Fujiwara, T., Samaj J., Baluska, F., Yang, Z., Osawa, H., Maeda, T., Mori, T., Volkmann, D., Matsumoto, H.: Aluminium-induced 1-3-β-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminium toxicity in plants. — Plant Physiol. 124: 991–1005, 2000.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith, E., Naik, D., Cumming, J.R.: Genotypic variation in aluminum resistance, cellular aluminum fractions, callose and pectin formation and organic acid accumulation in roots of Populus hybrids. — Environ. exp. Bot. 72: 182–193, 2011.

    Article  CAS  Google Scholar 

  • Tamás, L., Budíková, S., Šimonovičová, M., Huttová, J., Široká, B., Mistrík, I.: Rapid and simple method for Al-toxicity analysis in emerging barley roots during germination. — Biol. Plant. 50: 87–93, 2006.

    Article  Google Scholar 

  • Too, E.J.: Physiological and Molecular Characterization of Resistance to Aluminium Stress in Selected Grain Sorghums. — Thesis. Biological Sciences, Moi University, Eldoret 2011.

    Google Scholar 

  • Von Uexküll, H.R., Mutert, E.: Global extent, development and economic impact of acid soils. — Plant Soil 171: 1–15, 1995.

    Article  Google Scholar 

  • Xu, F.J., Li, G., Jin, C.W., Liu, W.J., Zhang, S.S., Zhang, Y.S., Lin, X.Y.: Aluminum-induced changes in reactive oxygen species accumulation, lipid peroxidation and antioxidant capacity in wheat root tips. — Biol. Plant. 56: 89–96, 2012.

    Article  CAS  Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., Devi, S.R., Rikiishi, S., Matsumoto, H.: Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. — Plant Physiol. 128: 63–72, 2002.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang, Z., Eticha, D., Albacete, A., Rao, I.M., Roitsch, T., Horst, W.J.: Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris). — J. exp. Bot. 63: 3109–3125, 2012.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Too.

Additional information

Acknowledgements: This work was supported by SIDA under the BIO-EARN programme given to the Moi University and the Swedish University of Agricultural Sciences through funding from the Swedish Ministry of Foreign Affairs as part of its special allocation on global food security (UD40). The authors are grateful to ICRISAT for sorghum seed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Too, E.J., Carlsson, A.S., Onkware, A.O. et al. Cell membrane integrity, callose accumulation, and root growth in aluminum-stressed sorghum seedlings. Biol Plant 58, 768–772 (2014). https://doi.org/10.1007/s10535-014-0455-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0455-0

Additional key words

Navigation