Skip to main content

Advertisement

Log in

Evaluation of amino acid profile in contrasting arsenic accumulating rice genotypes under arsenic stress

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Amino acids (AAs) play significant roles in metal binding, antioxidant defense, and signaling in plants during heavy metal stress. In the present study, the essential amino acids (EAAs), non-essential amino acids (NEAAs), as well as the enzymes of proline and cysteine biosynthetic pathways were studied in contrasting arsenic accumulating rice genotypes grown in hydroponic solutions with addition of arsenate (AsV) or arsenite (AsIII). Under a mild As stress, the total AAs content significantly increased in both the rice genotypes with a greater increase in a low As accumulating rice genotype (LAARG; IET-19226) than in a high As accumulating rice genotype (HAARG; BRG-12). At the equimolar concentration (10 μM), AsIII had a greater effect on EAAs than AsV. Conversely, AsV was more effective in inducing a proline accumulation than AsIII. Among NEAAs, As significantly induced the accumulation of histidine, aspartic acid, and serine. In contrast, a higher As concentration (50 μM) reduced the content of most AAs, the effect being more prominent during AsIII exposure. The inhibition of glutamate kinase activity was noticed in HAARG, conversely, serine acetyltransferase and cysteine synthase activities were increased which was positively correlated with the cysteine synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

amino acid

Ala:

alanine

Arg:

arginine

Asp:

aspartic acid

BCAAs:

branched chain amino acids

CS:

cysteine synthase

Cys:

cysteine

EEAs:

essential amino acids

GK:

glutamate kinase

Glu:

glutamic acid

Gly:

glycine

HAARG:

high As accumulating rice genotype

His:

histidine

Ile:

isoleucine

LAARG:

low As accumulating rice genotype

Leu:

leucine

Lys:

lysine

Met:

methionine

NEEAs:

non essential amino acids

Phe:

phenylalanine

Pro:

proline

RDI:

recommended daily intake

SAT:

serine acetyl transferase

Ser:

serine

Thr:

threonine

Tyr:

tyrosine

Val:

valine

References

  • Adams, E., Frank, L.: Metabolism of proline and the hydroxyprolines. — Annu. Rev. Biochem. 49: 1005–1061, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Ahsan, N., Lee, D.G., Alam, I., Kim, P J., Lee, J.J., Ahn, Y.O., Kwak, S.S., Lee, I.J., Bahk, J.D., Kang, K.Y., Renaut, J., Komatsu, S., Lee, B.H.: Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. — Proteomics 8: 3561–3576, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Bidlingmeyer, B.A., Cohe, S.A., Tarvin, T.L.: Rapid analysis of amino acids using pre column derivatization. — J. Chromatogr. 336: 93–104, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty, D., Trivedi, P.K., Misra, P., Tiwari, P., Shri, M., Shukla, D., Kumar, S., Rai, A., Pandey, A., Nigam, D., Tripathi, R.D., Tuli, R.: Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. — Chemosphere 74: 688–702, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Dave, R., Singh, P.K., Tripathi, P., Shri, M., Dixit, G., Dwivedi, S., Chakrabarty, D., Trivedi, P.K., Sharma, Y.K., Dhankher, O.P., Corpas, F.J., Barroso, J.B., Tripathi, R.D.: Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.). — Arch. Environ. Contam. Toxicol. 64: 235–242, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Davies, K.J., Delsignore, M.E., Lin, S.W.: Protein damage and degradation by oxygen radicals II Modification of amino acids. — J. biol.Chem. 262: 9902–9907, 1987.

    PubMed  CAS  Google Scholar 

  • Duan, M., Sun, S.S.M.: Profiling the expression of genes controlling rice grain quality. — Plant mol. Biol. 59: 165–178, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi, S., Mishra, A., Tripathi, P., Dave, R., Kumar, A., Srivastava, S., Chakrabarty, D., Trivedi, P.K., Adhikari, B., Norton, G.J., Nautiyal, C.S., Tripathi, R.D.: Arsenic affects essential and non-essential amino acids differentially in rice grains: inadequacy of amino acids in rice based diet. — Environ. Int. 46: 16–22, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi, S., Tripathi, R.D., Srivastava, S., Singh, R., Kumar, A., Tripathi, P., Dave, R., Rai, U.N., Chakrabarty, D., Trivedi, P.K., Tuli, R., Adhikari, B., Bag, M.K.: Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown under arseniccontaminated soils of West Bengal. — Protoplasma 245: 113–124, 2010a.

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi, S., Tripathi, R.D., Tripathi, P., Kumar. A., Dave, R., Mishra, S., Singh, R., Sharma, D., Rai, U.N., Chakrabarty, D., Trivedi, P.K., Adhikari, B., Bag, M.K., Dhankher, O. P., Tuli, R.: Arsenate exposure affects amino acids, mineral nutrient status and antioxidant in rice (Oryza sativa L.) genotypes. — Environ. Sci. Technol. 44: 9542–9549, 2010b.

    Article  PubMed  CAS  Google Scholar 

  • Galili, G.: New insights into the regulation and functional significance of lysine metabolism in plants. — Annu. Rev. Plant Biol. 7: 153–156, 2002.

    Google Scholar 

  • Galili, G., Amir, R., Hoefgen, R., Hesse, H.: Improving the levels of essential amino acids and sulfur metabolites in plants. — Biol. Chem. 386: 817–831, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hayzer, D.J., Leisinger, T.H.: The gene-enzyme relationships of proline biosynthesis in Escherichia coli. — J. gen. Microbiol. 11: 287–293, 1980.

    Google Scholar 

  • Herrera-Rodríguez, M.B., Pérez-Vicente, R., Maldonado, J.-M.: Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses. — Plant Physiol. Biochem. 45: 33–38, 2007.

    Article  PubMed  Google Scholar 

  • Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Panneerselvam, R.: Calcium chloride effects on salinityinduced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. — Compt. rend. Biol. 330: 674–683, 2007.

    Article  CAS  Google Scholar 

  • Kerkeb, L., Krämer, U.: The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. — Plant Physiol. 131: 716–724, 2003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kishor, P.B.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Sreenath, R., Reddy, K.J., Theriappan, T., Sreenivasulu, N.: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. — Curr. Sci. 88: 424–438, 2005.

    CAS  Google Scholar 

  • Liu, W.J., Zhu, Y.G., Smith, F.A., Smith, S.E.: Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? — Plant Physiol. 162: 481–488, 2004.

    CAS  Google Scholar 

  • Ma, J.F., Yamaji, N., Mitani, N., Xu, X.Y., Su, Y.H., McGrath, S.P., Zhao, F.J.: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. — Proc. nat. Acad. Sci., USA 105: 9931–9935, 2008.

    Article  CAS  Google Scholar 

  • Maeda, H., Yoo, H., Dudareva, N.: Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. — Natur. Chem. Biol. 7: 19–21, 2011.

    Article  CAS  Google Scholar 

  • Miflin, B.J., Lea, P. (ed.): Biochemistry of Plants: a Comprehensive Treatise. — Academic Press, San Diego 1990.

    Google Scholar 

  • Mishra, S., Dubey, R.S.: Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. — J. Plant Physiol. 163: 927–936, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Mishra. S., Wellenreuther, G., Mattusch, J., Stärk, H.J., Küpper, H.: speciation and distribution of arsenic in the nonhyperaccumulator macrophyte Ceratophyllum demersum. — Plant Physiol. 163: 1396–408, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Naujokas, M.F., Anderson, B., Ahsan, H., Aposhian, H.V., Graziano, J.H., Thompson, C., Suk, W.A.: The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. — Environ. Health Perspect. 121: 295–302, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayyar, H., Walia, D.P.: Water stress-induced Pro accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. — Biol. Plant 46: 275–279, 2003.

    Article  CAS  Google Scholar 

  • Norton, G.J., Adomako, E.E., Deacon, C.M., Carey, A.M., Price, A.H., Meharg, A.A.: Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. — Environ. Pollut. 177: 38–47, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Norton, G.J., Duan, G.L., Dasgupta, T., Islam, M.R., Lei, M., Zhu, Y., Deacon, C.M., Moran, A.C., Islam, R., Zhao, F.-J., Stroud, J.L., Mcgrath, S.P., Feldmann, J., Price, A.H., Meharg, A.A.: Environmental and genetic control of arsenic accumulation and speciation in rice grain: comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India. — Environ. Sci. Technol. 43: 8381–8386, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Paleg, L.G., Douglas, T.J., Daal, A.V., Keech, D.B.: Proline and betaine protect enzymes against heat inactivation. — Aust. J. Plant Physiol. 8: 107–114, 1981.

    CAS  Google Scholar 

  • Pavlík, M., Pavlíková, D., Staszková, L., Neuberg, M., Kaliszová, R., Száková, J., Tlustoš, P.: The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. — Ecotox. Environ. Safety 73: 1309–1313, 2010.

    Article  Google Scholar 

  • Rai, V.K.: Role of amino acids in plant responses to stresses. — Biol. Plant. 45: 481–487, 2002.

    Article  CAS  Google Scholar 

  • Sharma, S.S., Dietz, K.J.: The significance of amino acids and amino acid derived molecules in plant responses and adaptation to heavy metal stress. — J. exp. Bot. 57: 711–726, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Simon-Sarkadi, L., Kocsy, G., Várhegyi, Á., Galiba, G., De Ronde, J.A.: Stress-induced changes in the free amino acid composition in transgenic soybean plants having increased proline content. — Biol. Plant 50: 793–796, 2006.

    Article  CAS  Google Scholar 

  • Srivastava, S., Mishra, S., Tripathi, R.D., Dwivedi, S., Trivedi, P.K., Tandon, P.K.: Phytochelatins and antioxidants systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. — Environ. Sci. Technol. 41: 2930–2936, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, S., Srivastava, A., Suprasanna, P., D’souza, S.F.: Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. — J. exp. Bot. 60: 3419–3431, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Tripathi, P., Mishra, A., Dwivedi, S., Chakrabarty, D., Singh, R.P., Tripathi, R.D., Trivedi, P.K.: Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. — Ecotox. Environ. Safety 79: 189–98, 2012a.

    Article  CAS  Google Scholar 

  • Tripathi, P., Tripathi, R.D., Singh, R.P., Dwivedi, S., Chakrabarty, D., Trivedi, P.K., Adhikari, B.: Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. — Environ. Sci. Pollut. Res. 20: 884–896, 2012b.

    Article  Google Scholar 

  • Tripathi, R.D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D.K., Mathuis, F.J.M.: Arsenic hazards; strategies for tolerance and remediation by plants. — Trends Biotechnol. 25: 158–165, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Vašáková, L., Štefl, M.: Glutamate kinases from winter wheat leaves and some properties of proline-inhibitable glutamate kinase. — Collect. Czech. Chem. Commun. 47: 349–359, 1982.

    Article  Google Scholar 

  • Williams, P.N., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A.J., Feldmann, J., Meharg, A.A.: Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. — Environ. Sci. Technol. 41: 6854–6859, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wirtz, M., Berkowitz, O., Droux, M., Hell, R.: The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein-protein interaction. — Eur. J. Biochem. 268: 686–693, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zagorchev, L., Seal, C.E., Kranner, I., Odjakova, M.: A central role for thiols in plant tolerance to abiotic stress. — Int. J. mol. Sci. 14: 7405–7432, 2013.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao, F.J., Ago, Y., Mitani, N., Li, R.Y., Su, Y.H., Yamaji, N., McGrath, S.P., Ma, J.F.: The role of the rice aquaporin Lsi1 in arsenite efflux from roots. — New Phytol. 186: 392–399, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M.Z., Cai, C., Hu, Y., Sun, G.X., Williams, P.N., Cui, H.J., Li, G., Zhao, F.J., Zhu, Y.G.: Spatial distribution of arsenic and temporal variation of its concentration in rice. — New Phytol. 189: 200–209, 2011.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Tripathi.

Additional information

Acknowledgements: The authors are thankful to the Director of the National Botanical Research Institute, CSIR, Lucknow for the facilities and for the financial support from the CSIR-network projects (INDEPTH). A. Kumar is thankful to the Council of Scientific and Industrial Research, New Delhi, India for the award of Senior Research Fellowship. The authors are thankful to Dr. S. Mishra, the Department of Biology, the University of Kontanz, Germany, for the linguistic improvement of the MS.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Dwivedi, S., Singh, R.P. et al. Evaluation of amino acid profile in contrasting arsenic accumulating rice genotypes under arsenic stress. Biol Plant 58, 733–742 (2014). https://doi.org/10.1007/s10535-014-0435-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0435-4

Additional key words

Navigation