Skip to main content
Log in

In vitro culture of sweet basil: gas exchanges, growth, and rosmarinic acid production

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Five in vitro culture systems with different ventilation rates were used to investigate the influence of vessel environment on photosynthesis, dark respiration, ethylene evolution, and rosmarinic acid (RA) production in sweet basil (Ocimum basilicum L.) micropropagated shoots. The systems under comparison were two bioreactors with either temporary (RITA™) or stationary (Growtek™) immersion, and three types of vessels (Magenta™, Microbox ECO 2 ™, and PCCV25™) that are largely used for plant micropropagation. Shoots of green-leaved cv. Genovese and purple-leaved cv. Dark Opal were cultured on a modified Murashige and Skoog medium containing 0.25 mg dm−3 6-benzylaminopurine. The instantaneous rates of photosynthesis, dark respiration, and ethylene production were determined by gas chromatography measuring CO2 and ethylene concentrations in vessel headspaces. The tissue RA content was determined by HPLC in HCl-methanol extracts. The explant growth and morphology were significantly affected by culture conditions and cultivars. The largest biomass production was observed under the photomixotrophic culture conditions provided by Growtek™, whereas the highest RA content in shoot tissues was found in the RITA™ photomixotrophic system, where ethylene accumulated to the greatest extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAD:

caffeic acid derivative

PN :

net phothosynthetic rate

PPFD:

photosynthetic photon flux density

RA:

rosmarinic acid

RD :

dark respiration rate

References

  • Afreen, F., Zobayed, S.M.A., Kozai, T.: Photoautotrophic culture of Coffea arabusta somatic embryos: development of a bioreactor for large-scale plantlet conversion from cotyledonary embryos. — Ann. Bot. 90: 21–29, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Begum, F., Amin, M.N., Azad, M.A.K.: In vitro rapid clonal propagation of Ocimum basilicum L.. — Plant Cell Tissue Organ Cult. 12: 27–35, 2002.

    Google Scholar 

  • Bertoli, A., Lucchesini, M., Mensuali-Sodi, A., Leonardi, M., Doveri, S., Magnabosco, A., Pistelli L.: Aroma characterisation and UV elicitation of purple basil from different plant tissue cultures. — Food Chem. 141: 776–787, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Biddington, N.L.: The influence of ethylene in plant tissue culture. — Plant Growth Regul. 11: 173–187, 1992.

    Article  CAS  Google Scholar 

  • Bourgaud, F., Gravot, A., Milesi, S., Gontier, E.: Production of plant secondary metabolites: a historical perspective. — Plant Sci. 161: 839–851, 2001.

    Article  CAS  Google Scholar 

  • Chakrabarty, D., Park, S.Y., Ali, M.B., Shin, K.S., Paek, K.Y.: Hyperhydricity in apple: ultrastuctural and physiological aspects. — Tree Physiol. 26: 377–388, 2005.

    Article  Google Scholar 

  • Chanemougasoundharam, A., Sarkar, D., Pandey, S.K., Al-Biski, F., Helali, O., Minhas, J.S.: Culture tube closure-type affects potato plantlets growth and chlorophyll contents. — Biol. Plant. 48: 7–11, 2004.

    Article  CAS  Google Scholar 

  • Cho, G.H., Kim, D.I., Pedersen, H., Chin, C.K.: Ethephon enhancement of secondary metabolite synthesis in plant cell cultures. — Biotech. Progr. 4: 184–188, 1988.

    Article  CAS  Google Scholar 

  • Deng, Z., Chu, J., Wang, Q., Wang, L.: Effect of different carbon sources on the accumulation of carbohydrate, nutrient absorption and the survival rate of Chinese Ash (Fraxinus mandshurica) explants in vitro. — Afr. J. agr. Res. 7: 3111–3119, 2012.

    Google Scholar 

  • Dey, S.: Cost-effective mass cloning of plants in liquid media using a novel Growtek bioreactor. — In: Hvoslef-Eide, A.K., Preil W. (ed.): Liquid Culture Systems for in Vitro Plant Propagation. Pp. 127–141. Springer, Dordrecht 2005.

    Chapter  Google Scholar 

  • Diarra, S.T., He, J., Wang, J., Li J.: Ethylene treatment improves diosgenin accumulation in in vitro cultures of Dioscorea zingiberensis via up-regulation of CAS and HMGR gene expression. — Electron. J. Biotechn. 16: http://dx.doi.org/10.2225/vol16-issue5-fulltext-9, 2013.

  • Dias, M.C., Pinto, G.C., Correia, M., Moutinho-Pereira, J., Silva, S., Santos, C.: Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. — Biol. Plant. 57: 33–40, 2013.

    Article  CAS  Google Scholar 

  • Fujiwara, K., Kozai, T., Watanabe, I.: Measurements of carbon dioxide gas concentration in stoppered vessels containing tissue cultured plantlets and estimates of net photosynthetic rate of the plantlets. — J. Agr. Meteorol. 43: 21–30, 1987.

    Article  Google Scholar 

  • Gaspar, T., Franck, T., Bisbis, B., Kevers, C., Jouve, L., Haussman, J.F., Dommes, J.: Concepts in plant stress physiology. Application to plant tissue cultures. — Plant Growth Regul. 37: 263–285, 2002.

    Article  CAS  Google Scholar 

  • Georgiev, M.I., Weber, J., Maciuk, A.: Bioprocessing of plant cell cultures for mass production of targeted compounds. — Appl. Microbiol. Biotechnol. 83: 809–823, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Hakkim, F.L., Shankar, C.G., Girua, S.: Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures. — J. Agr. Food Chem. 55: 9109–9117, 2007.

    Article  CAS  Google Scholar 

  • Hazarika, B.N.: Morpho-physiological disorders in in vitro culture of plants. — Sci. Hort. 108: 105–120, 2006.

    Article  CAS  Google Scholar 

  • Ikemeyer, D., Barz, W.: Comparison of secondary product accumulation in photoautotrophic, photomixitrophic and heterotrophic Nicotiana tabacum cell suspension cultures. — Plant Cell Rep. 8: 479–482, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M. B.: Aeration stress in plant tissue cultures. — Bulg. J. Plant Physiol. 96(Special Issue): 109, 2003.

    Google Scholar 

  • Jayasinghe, C., Gotoh, N., Aoki, T., Wada, S.: Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). — J. Agr. Food Chem. 51: 4442–4449, 2003.

    Article  CAS  Google Scholar 

  • Juliani, H.R., Koroch, A.R., Simon, J.E.: Basil: A new source of rosmarinic acid — In: Ho, C.T., Simon, J.E., Shahidi, F., Shao, Y. (ed.): Dietary Supplements. Pp. 129–143. American Chemical Society, Washington 2008.

    Chapter  Google Scholar 

  • Karuppusamy, S.: A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. — J. med. Plants Res. 3: 1222–1239, 2009.

    CAS  Google Scholar 

  • Kiferle, C., Lucchesini, M., Mensuali-Sodi, A., Maggini, R., Raffaelli, A., Pardossi A.: Rosmarinic acid content in basil plants grown in vitro and in hydroponic. — Cent. Eur. J. Biol. 6: 946–957, 2011.

    Article  CAS  Google Scholar 

  • Kiferle, C., Maggini, R., Pardossi, A. Influence of nitrogen nutrition on growth and accumulation of rosmarinic acid in sweet basil (Ocimum basilicum L.) grown in hydroponic culture. — Aust. J. Crop Sci. 7: 321–327, 2013.

    CAS  Google Scholar 

  • Kintzios, S., Kollias, H., Straitouris, E., Makri, O.: Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid. — Biotechnol. Lett. 26: 521–523, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kintzios, S., Makri, O., Panagiotopoulos, E., Scapeti, M.: In vitro rosmarinic acid accumulation in sweet basil (Ocimum basilicum L.). — Biotechnol. Lett. 25: 405–408, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, Y., Fukui, H., Tabata, M.: Effect of carbon dioxide and ethylene on berberine production and cell browning in Thalictrum minus cell cultures. — Plant Cell Rep. 9: 496–499, 1991a.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, Y., Hara, M., Fukui, H., Tabata, M.: The role of ethylene in berberine production by Thalictrum minus cell suspension cultures. — Phytochemistry 30: 3605–3609, 1991b.

    Article  CAS  Google Scholar 

  • Kozai, T.: Autotrophic micropropagation. — In: Bajaj, Y.P.S. (ed.): Biotechnology in Agriculture and Forestry: High Tech and Micropropagation I. Pp. 313–343. Springer-Verlag, Berlin — Heidelberg 1991.

    Google Scholar 

  • Kozai, T., Kubota, C.: Concepts, definitions, ventilation methods, advantages and disadvantages. — In: Kozai T., Afreen, F., Zobayed, S.M.A. (ed.): Photoautotrophic (Sugar-Free Medium) Micropropagation as a New Propagation and Tansplant Production System. Pp. 9–30. Springer, Berlin 2005.

    Chapter  Google Scholar 

  • Kozai, T., Kubota, C., Chun, C., Afreen, F., Ohyama, K.: Necessity and concept of the closed transplant production system. — In: Kubota, C., Chun, C. (ed.): Proceedings for the International Symposium on Transplant Production in Closed System. Pp. 3–19. Kluwer Academic Publisher, Dordrecht 2000.

    Google Scholar 

  • Lucchesini, M., Bertoli, A., Mensuali-Sodi, A., Pistelli, L.: Establishment of in vitro tissue cultures from Echinacea angustifolia D.C. adult plants for the production of phytochemical compounds. — Sci. Hort. 122: 484–490, 2009.

    Article  CAS  Google Scholar 

  • Lucchesini, M., Mensuali-Sodi, A.: Plant tissue culture-an opportunity for the production of nutraceuticals. — In: Giardi, M.T., Rea, G., Berra, B. (ed.): Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensor. Pp: 185–200. Springer, New York 2010.

    Chapter  Google Scholar 

  • Lucchesini, M., Mensuali-Sodi, A., Massai, R., Gucci, R.: Development of autotropy and tolerance to acclimatization of Myrtus communis transplant cultured in vitro under different aeration. — Biol. Plant. 44: 167–174, 2001.

    Article  Google Scholar 

  • Lucchesini, M., Monteforti, G., Mensuali-Sodi, A., Serra, G.: Leaf ultrastructure, photosynthetic rate and growth of myrtle plantlets under different in vitro culture condictions. — Biol. Plant. 50: 161–168, 2006.

    Article  Google Scholar 

  • Makri, O., Kintzios, S.: Ocimum sp. (basil): botany, cultivation, pharmaceutical properties, and biotechnology. — J. Herbs Spices med. Plants 13: 123–150, 2007.

    Article  CAS  Google Scholar 

  • Martre, P., Lacan, D., Just, D., Teisson, C.: Physiological effects of temporary immersion on Hevea brasiliensis callus. — Plant Cell Tissue Organ Cult. 67: 25–35, 2001.

    Article  CAS  Google Scholar 

  • Matkowski, A.: Plant in vitro for the production of antioxidants, a review. — Biotech. Adv. 26: 548–560, 2008.

    Article  CAS  Google Scholar 

  • Mensuali-Sodi, A., Lucchesini, M., Maltinti, S., Serra, G., Tognoni, F.: Leaf senescence in tissue culture of Passiflora incarnata L.: the role of ethylene. — In: Ramina, A., Chang, C., Giovannoni, J., Klee, H., Perata, P., Woltering, E. (ed.): Advances in Plant Ethylene Research. Pp. 151–152. Springer, Dordrecht 2007.

    Chapter  Google Scholar 

  • Mensuali-Sodi, A., Panizza, M., Tognoni, F.: Studies on lavandin callus cultures: ethylene production in relation to the growth. — Biol. Plant. 31: 247–253, 1989.

    Article  CAS  Google Scholar 

  • Mensuali-Sodi, A., Panizza, M., Tognoni, F.: Quantification of ethylene losses in different container-seal systems and comparison of biotic and abiotic contributions to ethylene accumulation in cultured tissues. — Physiol. Plant. 84: 472–476, 1992.

    Article  CAS  Google Scholar 

  • Mingozzi M, Morini S., Lucchesini M., Mensuali-Sodi A.: Effects of leaf soluble sugars content and net photosynthetic rate of quince donor shoots on subsequent morphogenesis in leaf explants. — Biol. Plant. 55: 237–242, 2011.

    Article  CAS  Google Scholar 

  • Morgan, P.W., Drew, M.C.: Ethylene and plant responses to stress. — Physiol. Plant. 100: 620–630, 1997.

    Article  CAS  Google Scholar 

  • Mosaleeyanon, K., Zobayed, S.M.A., Afreen, F., Kozai, T.: Relationships between net photosynthetic rate and secondary metabolite contents in St. John’s wort. — Plant. Sci. 169: 523–537, 2005.

    Article  CAS  Google Scholar 

  • Moschopoulou, G., Kintzios, S.: Achievement of thousand-fold accumulation of rosmarinic acid in immobilized cells of sweet basil (Ocimum basilicum L.) by ten-fold increase of the volume of the immobilization matrix. — J. biol. Res. Thessalon. 15: 59–65, 2011.

    CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–493, 1962.

    Article  CAS  Google Scholar 

  • Nguyen, P.M., Kwee, E.M., Niemeyer, E.D.: Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. — Food Chem. 23: 1235–1241, 2010.

    Article  Google Scholar 

  • Panizza, M., Mensuali-Sodi, A., Tognoni, F.: Role of ethylene in axillary shoot proliferation of lavandin-interaction with benzyladenine and polyamines. — J. exp. Bot. 44: 387–394, 1993.

    Article  CAS  Google Scholar 

  • Park, S.U., Uddin, M.R., Xu, H., Kim, Y.K., Lee, S.Y.: Biotechnological applications for rosmarinic acid production in plant. — Afr. J. Biotechnol. 7: 4959–4965, 2008.

    CAS  Google Scholar 

  • Patnaik, J., Sahoo, S., Debata, B.K.: Somaclonal variation in cell suspension culture-derived regenerants of Cymbopogon martini (Roxb.) Wats var. motia. — Plant Breed. 118: 351–354, 1999.

    Article  Google Scholar 

  • Petersen, M., Simmonds, M.S.J.: Molecules of interest: rosmarinic acid. — Phytochemistry 62: 121–125, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Pospíšilová, J., Haisel, D., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, Š., Procházková, D., Šrámek, F.: Photosynthetic pigments and gas exchange during ex vitro acclimation of tobacco plants as affected by CO2 supply and abscisic acid. — Plant Cell Tissue Organ Cult. 61: 125–133, 2000.

    Article  Google Scholar 

  • Rady, M.R., Nazif, N.M.: Rosmarinic acid content and RAPD analysis of in vitro regenerated basil (Ocimum basilicum L.) plants. — Fitoterapia 6: 525–533, 2005.

    Article  Google Scholar 

  • Saher, S., Piqueras, A., Hellin, E., Olmos, E.: Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. — Physiol. Plant. 120: 152–161, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sahoo, Y., Patfnaik, S.K., Chand, P.K.: In vitro propagation of an aromatic medicinal herb Ocimum basilicum L. (sweet basil) by axillary shoot proliferation. — In vitro cell. dev. Biol. Plant. 33: 293–296, 1997.

    Article  Google Scholar 

  • Savio, L.E. B., Astarita, L.V., Santarém, E.R.: Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. — Plant Cell Tissue Organ Cult. 108: 465–472, 2012.

    Article  CAS  Google Scholar 

  • Steyn, W.J., Wand, S.J.E., Holcroft, D.M., Jacobs, G.: Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. — New Phytol. 55: 349–361, 2002.

    Article  Google Scholar 

  • Xiao, Y., Niu, G., Kozai, T.: Development and application of photoautotrophic micropropagation plant system. — Plant Cell Tissue Organ Cult. 105: 149–158, 2011.

    Article  CAS  Google Scholar 

  • Yasmin, S., Mensuali-Sodi, A., Perata, P., Pucciariello, C.: Ethylene influences in vitro regeneration frequency in the FR13A rice harbouring the SUB1A gene. — Plant Growth Regul. 72: 97–103, 2014.

    Article  CAS  Google Scholar 

  • Zhao, J., Davis, L.C., Verpoorte, R.: Elicitor signal transduction leading to production of plant secondary metabolites. — Biotechnol. Adv. 23: 283–333, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ziv, M.: Bioreactor technoloy for plant micropropagation. — Hort. Rev. 24: 1–30, 2000.

    CAS  Google Scholar 

  • Zobayed, S.M.A., Saxena, P.K.: Production of St. John’s wort plants under controlled environment for maximizing biomass and secondary metabolites. — In vitro cell. dev. Biol. Plant. 40: 108–114, 2004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lucchesini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiferle, C., Lucchesini, M., Maggini, R. et al. In vitro culture of sweet basil: gas exchanges, growth, and rosmarinic acid production. Biol Plant 58, 601–610 (2014). https://doi.org/10.1007/s10535-014-0434-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0434-5

Additional key words

Navigation