Skip to main content
Log in

Metabolism of glutathione and ascorbate in lingonberry cultivars during in vitro and ex vitro propagation

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Lingonberry (Vaccinium vitis-idaea L. ssp. vitis-idaea Britton) cultivars Regal, Splendor, and Erntedank were obtained by conventional softwood cuttings (taken as a control), by in vitro shoot proliferation of node explants, and by adventitious shoot regeneration from excised leaves of micropropagated shoots. In the plants propagated in vitro, the total ascorbate content increased and its pool was more oxidized, the total glutathione content also increased but its pool became more reduced. The leaves of plants obtained from the in vitro culture showed significantly higher antioxidant enzyme activities except for dehydroascorbate reductase which was at a similar level in all plants. Total soluble phenolics, tannins, and flavonoids were enhanced in fruits of in vitro-propagated plants whereas in leaves, the levels of these metabolites (except flavonoids) were higher in ex vitro derived plants. The total radical scavenging capacity was enhanced in berries of the in vitro propagated plants. It is suggested that the active morphogenetic process, characterized by intensive formation and scavenging reactive oxygen species is reflected in the activities of antioxidant enzymes and metabolites. The reduction potential of glutathione is the most important parameter which determines patterns of growth and differentiation in the investigated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFR:

ascorbate free radical

APX:

ascorbate peroxidase

AsA:

ascorbic acid

CE:

catechin equivalent

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

DPPH:

2,2-diphenyl-1-picrylhydrazyl

GAE:

gallic acid equivalent

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

LC:

plants propagated from leaf cultures

MDA:

malondialdehyde

MDHAR:

monodehydroascorbate reductase

NC:

plants propagated from node cultures

SC:

softwood cutting-derived plants

References

  • Aebi, H. Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Vol. 2. Pp. 673–684. Academic Press, NewYork 1974.

    Chapter  Google Scholar 

  • Anttonen, J.M., Karajalainen, O.R.: High-performance liquid chromatography analysis of black currant (Ribes nigrum L.) fruit phenolics grown either conventionally or organically. — J. Agr. Food Chem. 54: 7530–7538, 2006.

    Article  CAS  Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.

    Article  PubMed  CAS  Google Scholar 

  • Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. — Lebensm. Wiss. Technol. 28: 25–30, 1995.

    Article  CAS  Google Scholar 

  • Cárdenas, L.: New findings in the mechanisms regulating polar growth in root hair cells. — Plant Signal. Behav. 4: 4–8, 2009.

    Article  PubMed  Google Scholar 

  • Carol, R.J., Dolan, L.: The role of reactive oxygen species in cell growth: lessons from root hairs. — J. exp. Bot. 57: 1829–1834, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekara, N., Shahidi, F.: Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. — J. Agr. Food. Chem. 59: 5006–5014, 2011.

    Article  CAS  Google Scholar 

  • Debnath, S.C.: Bioreactors and molecular analysis in berry crop micropropagation. — Can. J. Plant Sci. 91: 147–157, 2011.

    Article  Google Scholar 

  • Debnath, S.C.: Influence of propagation method and indole-3-butyric acid on growth and development of in vitro- and ex vitro-derived lingonberry plants. — Can. J. Plant Sci. 86: 235–243, 2006.

    Article  CAS  Google Scholar 

  • Debnath, S.C.: Morphological development of lingonberry as affected by in vitro and ex vitro culture methods and source propagule. — HortScience 40: 760–763, 2005a

    Google Scholar 

  • Debnath, S.C.: Effects of carbon source and concentration on development of lingonberry (Vaccinium vitis-idaea L.) shoots cultivated in vitro from nodal explants. — In Vitro cell. dev. Biol. Plant 41: 145–150, 2005b.

    Article  CAS  Google Scholar 

  • Debnath, S.C.: Micropropagation of lingonberry: Influence of genotype, explant orientation, and overcoming TDZinduced inhibition of shoot elongation using zeatin. — HortScience 40: 185–188, 2005c.

    CAS  Google Scholar 

  • Debnath, S.C., McRae, K.B.: An efficient adventitious shoot regeneration system on excised leaves of micropropagated lingonberry (Vaccinium vitis-idaea L.). — J. hort. Sci. Biotechnol. 77: 744–752, 2002.

    CAS  Google Scholar 

  • Diaz-Vivancos, P., Dong, Y.P., Ziegler, K., Markovic, J., Pallardó, F., Pellny, T.K., Verrier, P., Foyer, C.H.: Recruitment of glutathione into the nucleus during cell proliferation adjusts whole cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. — Plant J. 64: 825–838, 2010.

    Article  Google Scholar 

  • Ek, S., Kartimo, H., Mattila, S., Tolonne, A.: Characterization of phenolic compounds from lingonberry (Vaccinium vitis-idaea). — J. Agr. Food Chem. 54: 9834–9842, 2006.

    Article  CAS  Google Scholar 

  • Foley, S.L., Debnath, S.C.: Influence of in vitro and ex vitro propagation on anthocyanin content and antioxidant activity of lingonberries. — J. hort. Sci. Biotechnol. 82: 114–118, 2007.

    CAS  Google Scholar 

  • Fiorani, F., Umbach, A.L., Siedow, J.N.: The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. — Plant Physiol. 139: 1795–1805, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., Davies, J.M., Dolan, L.: Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. — Nature 422: 442–446, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Frederico, A.M., Campos, M.D., Cardoso, H.G., Imani, J., Arnholdt-Schmitt, B.: Alternative oxidase involvement in Daucus carota somatic embryogenesis. — Physiol. Plant. 137: 498–508, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, S.D., Datta, S.: Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. — Biol. Plant. 47: 179–183, 2003.

    Article  CAS  Google Scholar 

  • Hilal, M., Castagnaro, A., Moreno, H., Massa, E.M.: Specific localization of the respiratory alternative oxidase in meristematic and xylematic tissues from developing soybean roots and hypocotyls. — Plant Physiol. 115: 1499–1503, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Horemans, N., Foyer, C.H., Asard, H.: Transport and action of ascorbate at the plant plasma membrane. — Trends Plant Sci. 5: 263–267, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev, A.U., Bykova, N.V., Hill, R.D.: Structural and functional properties of class 1 plant hemoglobins. — IUBMB Life 63: 146–152, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev, A.U., Stoimenova, M., Seregélyes, C., Hill, R.D.: Class-1 hemoglobin and antioxidant metabolism in alfalfa roots. — Planta 223: 1041–1046, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Jaakola, L., Tolvanen, A., Laine, K., Hohtola, A.: Effect of N-6-isopentenyladenine concentration on growth initiation in vitro and rooting of bilberry and lingonberry microshoots. — Plant Cell Tissue Organ Cult. 66: 73–77, 2001.

    Article  CAS  Google Scholar 

  • Jana, S., Shekhawat, G.S.: In vitro regeneration of Anethum graveolens, antioxidative enzymes during organogenesis and RAPD analysis for clonal fidelity. — Biol. Plant. 56: 9–14, 2012.

    Article  CAS  Google Scholar 

  • Jiang, K., Feldman, L.: Positioning of the auxin maximum affects the character of cells occupying the root stem cell niche. — Plant Signal. Behav. 5: 1–3, 2010.

    Article  Google Scholar 

  • Kampfenkel, K., Montagu, M.V., Inzé, D.: Extraction and determination of ascorbate and dehydroascorbate from plant tissue. — Anal. Biochem. 225: 165–167, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kranner, I., Birtic, S., Anderson, K.M., Pritchard, H.W.: Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death. — Free Radicals Biol. Med. 40: 2155–2165, 2006.

    Article  CAS  Google Scholar 

  • Lätti, A.K., Riihinen, K.R., Jaakola, L.: Phenolic compounds in berries and flowers of a natural hybrid between bilberry and lingonberry (Vaccinium × intermedium Ruthe). — Phytochemistry 72: 810–815, 2011.

    Article  PubMed  Google Scholar 

  • McNulty, A.K., Cummins, W.R., Pellizzari, A.: A field survey of respiration rates in leaves of arctic plants. — Arctic 41: 1–5, 1988.

    Google Scholar 

  • Mitrovic, A., Janosevic, D., Budimir, S., Pristov, J.B.: Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis. — Biol. Plant. 56: 357–361, 2012.

    Article  CAS  Google Scholar 

  • Murshed, R., Lopez-Lauri, F., Sallanon, H.: Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. — Anal. Biochem. 383: 320–322, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Mülle, K., Linkies, A., Vreeburg, R.A., Fry, S.C., Krieger-Liszkay, A., Leubner-Metzger, G.: In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. — Plant Physiol. 150: 1855–1865, 2009.

    Article  Google Scholar 

  • Mullinieaux, P.M., Rausch, T.: Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. — Photosynth. Res. 86: 459–474, 2005.

    Article  Google Scholar 

  • Meyer, A.J.: Glutathione homeostasis and redox signalling. — J. Plant Physiol. 165: 1390–1403, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., Foyer, C.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249–279, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., Foyer, C.H.: Glutathione in plants: an integrated overview. — Plant Cell Environ. 35: 454–484, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Saez, P.L., Bravo, L.A., Saez, K.L., Sanchez-Olate, M., Latsague, M.I., Rios, D.G.: Photosynthetic and leaf anatomical characteristics of Castanea sativa: a comparison between in vitro and nursery plants. — Biol. Plant. 56: 15–24, 2012.

    Article  CAS  Google Scholar 

  • Sanchez-Fernandez, R., Fricker, M., Corben, L., White, N.S., Sheard, N., Leaver, C.J., Van Montagu, M., Inze, D., May, M.J.: Cell proliferation and hair tip growth in the Arabidopsis root under mechanistically different forms of redox control. — Proc. nat. Acad. Sci. USA 94: 2745–2750, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, F.Q., Buettner, G.R.: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. — Free Radicals Biol. Med. 30: 1191–1212, 2001.

    Article  CAS  Google Scholar 

  • Shekhawat, G.S., Verma, K., Jana, S., Singh, K., Teotia, P., Prasad, A.: In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. — Protoplasma 239: 31–38, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Stasolla, C., Belmonte, M.F., Van Zyl, L., Craig, D.L., Liu, W., Yeung, E.C., Sederoff, R.: The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. — J. exp. Bot. 55: 695–709, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Stasolla, C., Yeung, E.C.: Exogenous applications of ascorbic acid induce shoot apical meristem growth in germinating white spruce (Picea glauca) somatic embryos. — Int. J. Plant Sci. 167: 429–436, 2006.

    Article  CAS  Google Scholar 

  • Talukdar, D.: Ascorbate deficient semi-dwarf asfL1 mutant of Lathyrus sativus exhibits alterations in antioxidant defense. — Biol. Plant. 56: 675–682, 2012.

    Article  CAS  Google Scholar 

  • Thomas, C.E., McLean, L.R., Parker, R.A., Ohlweiler, D.F.: Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. — Lipids 27: 543–550, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Uhrig, J.F., Hülskamp, M.: Plant GTPases: regulation of morphogenesis by ROPs and ROS. — Curr Biol. 16: R211–213, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Vatankhah, E., Niknam, V., Ebrahimzadeh, H.: Activity of antioxidant enzymes during in vitro organogenesis in Crocus sativus. — Biol. Plant. 54: 509–514, 2010.

    Article  CAS  Google Scholar 

  • Verma, K., Shekhawat, G.S., Sharma, A., Mehta, S.K., Sharma, V.: Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3–4 leaf stage plants of Brassica juncea (L.) Czern. — Plant Cell Rep. 27: 1261–1269, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Vernoux, T., Wilson, R.C., Seeley, K.A., Reichheld, J.P., Muroy, S., Brown, S., Maughan, S.C., Cobbett, C.S., Van Montagu, M., Inzé, D., May, M.J., Sung, Z.R.: The root MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. — Plant Cell 12: 97–110, 2000.

    PubMed  CAS  Google Scholar 

  • Wang, S.Y., Feng, R,. Bowman, L., Penhallegon, R., Ding, M., Lu, Y.: Antioxidant activity in lingonberries (Vaccinium vitis-idaea L.) and its inhibitory effect on activator protein-1, nuclear factor-kappa B, and mitogen-activated protein kinases activation. — J. Agr. Food Chem. 53: 3156–3166, 2005.

    Article  CAS  Google Scholar 

  • Zaharieva, T.B., Abadía, J.: Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots. — Protoplasma 221: 269–275, 2003.

    PubMed  CAS  Google Scholar 

  • Zechmann, B., Koffler, B.E., Russell, S.D.: Glutathione synthesis is essential for pollen germination in vitro. — BMC Plant Biol. 11: 54, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Zhishen, J., Mengcheng, T., Jianming, W.: The determination of flavonoid contents in mulberry and their scavenging effect on superoxide radicals. — Food Chem. 64: 555–559, 1999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. U. Igamberdiev.

Additional information

Acknowledgements: This work was supported by the Natural Sciences and Engineering Research Council of Canada. The authors thank Neel Chandrasekara, Sarah Leonard, Glenn Chubbs, and Darryl Martin for their excellent technical help.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyas, P., Debnath, S.C. & Igamberdiev, A.U. Metabolism of glutathione and ascorbate in lingonberry cultivars during in vitro and ex vitro propagation. Biol Plant 57, 603–612 (2013). https://doi.org/10.1007/s10535-013-0339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-013-0339-8

Additional key words

Navigation