Skip to main content
Log in

Recent advances in molecular events of fruit abscission

  • Review
  • Published:
Biologia Plantarum

Abstract

It is widely accepted that fruit abscission is a highly regulated developmental process that is both influenced and activated in response to changing environment and plays crucial roles in the health and reproductive success of plants. Recent evidences showed that numerous genes related to metabolic and signalling pathways were coordinately implicated in regulating fruit abscission. Cross talks within hormones, between saccharides and hormones, as well as between polyamines and ethylene result in synergetic or antagonistic interactions which together play an important role in adjusting fruit abscission. Although hormones are the most studied internal factors related to abscission, the role of saccharides and polyamines during fruit abscission is emerging now. The characterizations of the molecular mechanisms of regulating fruit abscission are essential to develop effective strategies for controlling this process in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ACC:

1-aminocyclopropane-1-carboxylic acid

ACO:

1-aminocyclopropane-1-carboxylic acid oxidase

ACS:

1-aminocyclopropane-1-carboxylic acid synthase

ADC:

arginine decarboxylase

ADE:

adenylate

AFLP:

amplified fragment length polymorphism

AVG:

aminoethoxyvinylglycine

AZ:

abscission zone

CMNP:

5-chloro-3-methyl-4-nitro-1H-pyrazole

DAO:

diamine oxidase

D-SAM:

decarboxylated S-adenosyl methionine

EG:

β-1,4-glucanase

GA:

gibberellin

HXK:

hexokinase

IAA:

indole acetic acid

JA:

jasmonate

LOX:

lipoxygenase

LTP:

lipid transfer protein

MCP:

1-methylcyclopropane

MTA:

5′-methylthioribose

NAA:

naphthaleneacetic acid

NO:

nitric oxide

ODC:

ornithine decarboxylase

PA:

polyamine

PAO:

polyamine oxidase

PAT:

polar auxin transport

PG:

polygalacturonase

PLA2 :

phospholipase A2

Put:

putrescine

ROS:

reactive oxygen species

SAM:

S-adenosyl methionine

SAMDC:

S-adenosyl methionine decarboxylase

S6PDH:

D-sorbitol-6-phosphate dehydrogenase

Spd:

spermidine

SPDS:

spermidine synthase

Spm:

spermine

TFs:

transcription factors

TPS:

trehalose-6-phosphate

References

  • Alburquerque, N., Egea, J., Burgos, L., Martínez-Romero, D., Valero, D., Serrano, M.: The influence of polyamines on apricot ovary development and fruit set. — Ann. appl. Biol. 149: 27–33, 2006.

    Article  Google Scholar 

  • Alferez, F., Singh, S., Umbach, A.L., Hochema, B., Burns, J.: Citrus abscission and Arabidopsis plant decline in response to 5-chloro-3-methyl-4-nitro-1H-pyrazole are mediated by lipid signaling. — Plant Cell Environ. 28: 1436–1449, 2005.

    Article  CAS  Google Scholar 

  • Alferez, F., Zhong, G.Y., Burns, J.K.: A citrus abscission agent induces anoxia- and senescence-related gene expression in Arabidopsis. — J. exp. Bot. 58: 2451–2462, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Aziz, A., Brun, O., Audran, J.C.: Involvement of polyamines in the control of fruitlet physiological abscission in grapevine (Vitis vinifera). — Physiol. Plant. 113: 50–58, 2001.

    Article  CAS  Google Scholar 

  • Bangerth, F.: Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators. — Plant Growth Regul. 31: 43–59, 2000.

    Article  CAS  Google Scholar 

  • Blanusa, T., Else, M.A., Atkinson, C.J., Davies, W.J.: The regulation of sweet cherry fruit abscission by polar auxin transport. — Plant Growth Regul. 45: 189–198, 2005.

    Article  CAS  Google Scholar 

  • Bleecker, A.B., Patterson, S.E.: Last exit: senescene, abscission and meristem arrest in Arabidopsis. — Plant Cell 9: 1169–1179, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Botton, A., Eccher, G., Forcato, C., Ferrarini, A., Begheldo, M., Zermiani, M., Moscatello, S., Battistelli, A., Velasco, R., Ruperti, B., Ramina, A.: Signaling pathways mediating the induction of apple fruitlet abscission. — Plant Physiol. 155: 185–208, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H.Q., Dekkers, K.L.: Evaluation of growth regulator inhibitors for controlling postbloom fruit drop (PFD) of citrus induced by the fungus Colletotrichum acutatum. — HortScience 41: 1317–1321, 2006.

    CAS  Google Scholar 

  • Dal Cin, V., Barbaro, E., Danesin, M., Murayama, H., Velasco, R., Ramina, A.: Fruitlet abscission: a cDNA-AFLP approach to study genes differentially expressed during shedding of immature fruits reveals the involvement of a putative auxin hydrogen symporter in apple (Malus domestica L. Borkh). — Gene 442: 26–36, 2009b.

    Article  Google Scholar 

  • Dal Cin, V., Danesin, M., Boschetti, A., Dorigoni, A., Ramina, A.: Ethylene biosynthesis and perception in apple fruitlet abscission (Malus domestica L.Borck). — J. exp. Bot. 56: 2995–3005, 2005.

    Article  PubMed  Google Scholar 

  • Dal Cin, V., Galla, G., Boschetti, A., Dorigoni, A., Velasco, R.: Ethylene involvement in auxin transport during apple fruitlet abscission (Malus domestica L. Borkh). — In: Ramina, A., Chang, C., Giovannoni, J., Klee, H., Perata, P., Woltering, E. (ed.): Advances in Plant Ethylene Research. Pp. 89–93. Springer, Dordrecht 2007.

    Chapter  Google Scholar 

  • Dal Cin, V., Velasco, R., Ramina, A.: Dominance induction of fruitlet shedding in Malus × domestica (L. Borkh): molecular changes associated with polar auxin transport. — BMC Plant Biol. 9: 139–152, 2009a.

    Article  Google Scholar 

  • Else, M.A., Stankiewicz-Davies, A.P., Crisp, C.M., Atkinson, C.J.: The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention. — J. exp. Bot. 55: 2099–2190, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, O., Bethencourt, L., Quero, A., Sangwan, R.S., Clement, C.: Trehalose and plant stress responses: friend or foe? — Trends Plant Sci. 15: 409–417, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Gil-Amado, J.A., Gomez-Jimenez, M.C.: Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission. — Planta 235: 1221–1237, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Cadenas, A., Mehouachi, J., Tadeo, F.R., Primo-Millo, E., Talon, M.: Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. — Planta 210: 636–643, 2000.

    Article  PubMed  Google Scholar 

  • Gomez-Jimenez, M.C., Paredes, M.A., Gallardo, M., Sanchez-Calle, I.M.: Mature fruit abscission is associated with upregulation of polyamine metabolism in the olive AZ. — J. Plant Physiol. 167: 1432–1441, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, J., Smeekens, S.: Sugar perception and signaling — an update. — Curr. Opin. Plant Biol. 12: 562–567, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Hartmond, U., Yuan, R.C., Burns, J.K., Grant, A., Kender, W.: Citrus fruit abscission induced by methyl-jasmonate. — J. amer. Soc. hort. Sci. 125: 547–552, 2000.

    CAS  Google Scholar 

  • Hilt, C., Bessis, R.: Abscission of grapevine fruitlets in relation to ethylene biosynthesis. — Vitis 42: 1–3, 2003.

    CAS  Google Scholar 

  • Iglesias, D.J., Tadeo, F.R., Primo-Millo, E., Talon, M.: Fruit set dependence on carbohydrate availability in citrus trees. — Tree Physiol. 23: 199–204, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Iglesias, D.J., Tadeo, F.R., Primo-Millo, E., Talon, M.: Carbohydrate and ethylene levels related to fruitlet drop through AZ A in citrus. — Trees 20: 348–355, 2006.

    Article  CAS  Google Scholar 

  • Ish-Shalom, M., Dahan, Y., Maayan, I., Irihimovitch, V.: Cloning and molecular characterization of an ethylene receptor gene, MiERS1, expressed during mango fruitlet abscission and fruit ripening. — Plant Physiol. Biochem. 49: 931–936, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Karuppiah, K.J., Burns, J.K.: Expression of ethylene biosynthesis and signaling genes during differential abscission responses of sweet orange leaves and mature fruit. — J. amer. Soc. hort. Sci. 135: 456–464, 2010.

    Google Scholar 

  • Kazokas, W.C., Burns, J.K.: Cellulase activity and gene expression in citrus fruit AZs during and after ethylene treatment. — J. amer. Soc. hort. Sci. 123: 781–786, 1998.

    CAS  Google Scholar 

  • Kolarič, J., Pleško, M.I., Tojnko, S., Stopar, M.: Apple fruitlet ethylene evolution and MdACO1, MdACS5A, and MdACS5B expression after application of naphthaleneacetic acid, 6-benzyladenine, ethephon, or shading. — HortScience 46: 1381–1386, 2011.

  • Lanahan, M.B., Yen, H.C., Giovannoni, J.J., Klee, H.J.: The Never Ripe mutation blocks ethylene perception in tomato. — Plant Cell 6: 521–530, 1994.

    PubMed  CAS  Google Scholar 

  • Li, J.G., Yuan, R.G.: NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in’ Delicious’ apples. — J. Plant Growth Regul. 27: 283–295, 2008.

    Article  CAS  Google Scholar 

  • Li, J.G., Zhu, G., Yuan, R.G.: Profiling the expression of genes related to ethylene biosynthesis, ethylene perception, and cell wall degradation during fruit abscission and fruit ripening in apple. — J. amer. Soc. hort. Sci. 135: 391–401, 2010.

    Google Scholar 

  • Mahouachi, J., Gómez-Cadenas, A., Primo-Millo, E., Talon, M.: Abscisic acid and gibberellins in citrus fruits subjected to a series of different water conditions. — J. Plant Growth Regul. 24: 179–187, 2005.

    Article  CAS  Google Scholar 

  • Mahouachi, J., Iglesias, D.J., Agustí, M., Talon, M.: Delay of early fruitlet abscission by branch girdling in citrus coincides with previous increases in carbohydrate and gibberellin concentrations. — Plant Growth Regul. 58: 15–23, 2009.

    Article  CAS  Google Scholar 

  • Mao, L., Begum, D., Chuang, H.W., Budiman, M.A., Szymkowiak, E.J., Irish, E.E., Wing, R.A.: JOINTLESS is a MADS-box gene controlling tomato flower AZ development. — Nature 406: 910–913, 2000.

    Article  PubMed  CAS  Google Scholar 

  • McCourt, P., Creelman, R.: The ABA receptors — we report you decide. — Curr. Opin. Plant Biol. 11: 474–478, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, T., Kimbara, J., Fujisawa, M., Kitagawa, M., Ihashi, N., Maeda, H., Kasumi, T., Ito, Y.: MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. — Plant Physiol. 158: 439–450, 2012.

    Google Scholar 

  • Ooms, J.J.J., Kloosterziel, K.M.L., Bartels, D., Koornneef, M., Kassen, C.M.: Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. — Plant Physiol. 102: 1185–1191, 1993.

    Google Scholar 

  • Parra-Lobato, M.C., Gomez-Jimenez, M.C.: Polyamine-induced modulation of genes involved in ethylene biosynthesis and signaling pathways and nitric oxide productionduring olive mature fruit abscission. — J. exp. Bot. 62: 4447–4465, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Peleg, Z., Blumwald, E.: Hormone balance and abiotic stress tolerance in crop plants. — Curr. Opin. Plant Biol. 14: 290–295, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Pierik, R.L.M.: Hormonal regulation of secondary abscission in pear pedicels in vitro. — Plant Physiol. 48: 5–8, 1980.

    Article  CAS  Google Scholar 

  • Pozo, L., Yuan, R., Kostenyyuk, I., Alferez, F., Zhong, G.Y., Burns, J.K.: Differential effects of 1-methylcyclopropene on citrus leaf and mature fruit abscission. — J. amer. Soc. hort. Sci. 129: 473–478, 2004.

    CAS  Google Scholar 

  • Racskó, J., Soltész, M., Szabó, Z., Nyéju, J.: Fruit drop: II. Biological background of flower and fruit drop. — Int. J. hort. Sci. 12: 103–108, 2006.

    Google Scholar 

  • Rasori, A., Ruperti, B., Bonghi, C., Tonutti, P., Ramina, A.: Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. — J. exp. Bot. 53: 2333–2339, 2002.

    PubMed  CAS  Google Scholar 

  • Rolland, F., Baena-Gonzalez, E., Sheen, J.: Sugar sensing and signaling in plants: conserved and novel mechanisms. — Annu. Rev. Plant Biol. 57: 675–709, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz, R., García-Luis, A., Monerri, C., Guardiola, J.L.: Carbohydrate availability in relation to fruitlet abscission in citrus. — Ann. Bot. 87: 805–812, 2001.

    Article  CAS  Google Scholar 

  • Sexton, R., Roberts, J.: Cell biology of abscission. — Annu. Rev. Plant Physiol. 33: 133–162, 1982.

    Article  CAS  Google Scholar 

  • Schumacher, K., Schmitt, T., Rossberg, M., Schmitz, G., Theres, K.: The lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. — Proc. nat. Acad. Sci. USA 96: 290–295, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E., Whiting, M.: Effect of ethephon on sweet cherry pedicel-fruit retention force and quality is cultivar dependent. — Plant Growth Regul. 60: 213–223, 2010.

    Article  CAS  Google Scholar 

  • Sun, L.X., Bukovac, M.J., Forsline, P.L., Nocker, S.V.: Natural variation in fruit abscission-related traits in apple (Malus). — Euphytica 165: 55–67, 2009.

    Article  Google Scholar 

  • Taesakul, P., Pradisthakarn, N., Chantaksinopas, S., Siriphanich, J.: Longkong fruit abscission and its control. — Postharvest Biol. Technol. 64: 91–93, 1012.

    Article  Google Scholar 

  • Taylor, J.E., Whitelaw, C.A.: Signals in abscission. — New Phytol. 151: 323–339, 2001.

    Article  CAS  Google Scholar 

  • Vandenbussche, F., Straeten, V.D.: One for all and all for: cross-talk of multiple signals controlling the plant phenotype. — J. Plant Growth Regul. 26: 178–187, 2007.

    Article  CAS  Google Scholar 

  • Wang, X.M.: Lipid signaling. — Curr. Opin. Plant Biol. 7: 392–336, 2004.

    Article  Google Scholar 

  • Whitelaw, C.A., Lyssenko, N.N., Chen, L., Zhou, D., Mattoo, A.K., Tucker, M.L.: Delayed abscission and shorter internodes correlated with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato. — Plant Physiol. 128: 978–987, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Wiersma, P.A., Zhang, H., Lu, C., Quail, A., Toivonen, P.M.A.: Survey of the expression of genes for ethylene synthesis and perception during maturation and ripening of ‘sunrise’ and ‘Golden Delicious’ apple fruit. — Postharvest Biol. Technol. 44: 204–211, 2007.

    Article  CAS  Google Scholar 

  • Wu, X.M., Yu, W.Y., Han, L.B., Li, C.L., Wang, H.Y., Zhong, N.Q., Yao, Y., Xia, G.X.: The tobacco BLADE-ONPETIOLE2 gene mediates differentiation of the corolla abscission zone by controlling longitudinal cell expansion. — Plant Physiol. 159: 835–850, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z.C., Burns, J.K.: Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in ‘Valencia’ orange during abscission. — J. exp. Bot. 54: 1183–1191, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z.C., Burns, J.K.: A β-galactosidase gene is expressed during mature fruit abscission of ‘Valencia’ orange (Citrus sinensis). — J. exp. Bot. 55: 1483–1490, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, R.C., Kender, W.J., Burns, J.K.: Young fruit and auxin transport inhibitors affect the response mature ‘Valencia’ oranges to abscission materials via changing endogenous plant hormones. — J. amer. Soc. hort. Sci. 128: 302–308, 2003.

    CAS  Google Scholar 

  • Yuan, R.G., Li, J.G.: Effect of sprayable 1-MCP, AVG, and NAA on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of ‘Delicious’ apple. — Hort Science 43: 1454–1460, 2008.

    Google Scholar 

  • Zhou, C.J., Lakso, A.N., Robinson, T.L., Gan, S.S.: Isolation and characterization of genes associated with shade-induced apple abscission. — Mol. Genet. Genomics 280: 83–92, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H., Beers, E.P., Yuan, R.C.: Aminoethoxyvinylglycine inhibits fruit abscission induced by naphthaleneacetic acid and associated relationships with expression of genes for ethylene biosynthesis, perception, and cell wall degradation in ‘Delicious’ apple. — J. amer. Soc. hort. Sci. 133: 727–734, 2008.

    Google Scholar 

  • Zhu, H., Yuan, R.G.: Effects of 1-methylcyclopropene and naphthaleneacetic acid on fruit set and expression of genes related to ethylene biosynthesis and perception and cell wall degradation in apple. — J. amer. Soc. hort. Sci. 135: 402–409, 2010.

    Google Scholar 

  • Zhu, H., Dardick, C.D., Beers, E.P., Callanhan, A.M., Xia, R., Yuan, R.C.: Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. — BMC Plant Biol. 11:138–157, 2011.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zheng.

Additional information

Acknowledgements: We thank Dr. Muhammad Azam and Dr. Zhan Leilei for critical reading this manuscript. This work was funded by Chongqing Key Laboratory of Citrus (CKLC201107), CUAS(Z2010SK10), MOST (2009GF1004), and Chongqing citrus major technology research (2009-02).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, R.J., Deng, L., Jing, L. et al. Recent advances in molecular events of fruit abscission. Biol Plant 57, 201–209 (2013). https://doi.org/10.1007/s10535-012-0282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0282-0

Additional key words

Navigation