Skip to main content

Advertisement

Log in

Water deficit and recovery response of Medicago truncatula plants expressing the ELIP-like DSP22

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

In this article, we present the response of Medicago truncatula Gaert. cv. Jemalong plants expressing constitutively the Dsp22 gene from Craterostigma plantagineum to water stress and rehydration. The Dsp22 gene encodes an ELIP-like protein thought to protect the chloroplast against photooxidative damage during the dehydration and rehydration. The Dsp22 transgenic homozygous M. truncatula plants showed higher amount of chlorophyll (Chl), lower Chl a/Chl b ratio and higher actual efficiency of energy conversion in photosystem 2 (ΦPSII) after rehydration, when compared to the wild type. The combined data from the Chl a fluorescence analysis, pigment quantification and biomass accumulation showed that transgenic M. truncatula plants are able to recover from water deprivation better than wild type plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Chl:

chlorophyll

DSP22:

desiccation stress protein (22 kDa)

ELIPs:

early light induced proteins

Fv/Fm :

variable to maximum Chl fluorescence ratio (maximum quantum efficiency of photosystem 2)

LA:

leaf blade area

LHC 2:

light harvesting complexes of the photosystem 2

PAR:

photosynthetically active radiation

PSII:

photosystem II

qN:

non-photochemical quenching

qP:

photochemical quenching

RWC:

relative water content

SWC:

soil water content

WD:

water deficit

WDR:

water deficit recovery

WW:

well watered

ΦPSII :

actual efficiency of energy conversion in photosystem 2

References

  • Abramoff, M.D., Magalhaes, P.J., Ram, S.J.: Image processing with ImageJ. - Biophotonics Int. 11: 36–42, 2004.

    Google Scholar 

  • Amdaska, I., Roobol-Bóza, M., Lindahl, M., Andersson, B.: Isolation of pigment-binding early light-inducible proteins from pea. - Eur. J. Biochem. 260: 453–460, 1999.

    Google Scholar 

  • Alamillo, J.M., Bartels, D.: Effects of desiccation on photosynthetic pigments and the ELIP-like dsp22 protein complexes in the resurrection plant Craterostigma plantagineum. - Plant Sci. 160: 1161–1170, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Almeida, A.M., Silva, A.B., Araújo, S.S., Alfaro-Cardoso, L., Santos, D.M., Torné, J.M., Silva J.M., Paul, M., Fevereiro, P.S.: Responses to water withdrawal of tobacco plants genetically engineered with the AtTPS1 gene: a special reference to photosynthetic parameters. - Euphytica 154: 113–126, 2007.

    Article  CAS  Google Scholar 

  • Ané, J.M., Zhu, H., Frugoli, J.: Recent advances in Medicago truncatula genomics. - Int. J. Plant Genomics 2008: ID 256597, 2008.

    Article  Google Scholar 

  • Araújo, S.S., Duque, A.S.R.L.A., Santos, D.M.M.F., Fevereiro, M.P.S.: An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. - Plant Cell Tissue Organ Cult. 78: 123–131, 2004.

    Article  Google Scholar 

  • Bartels, D., Hanke, C., Schneider, K., Michel, D., Salamini, F.: A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. - EMBO J. 11: 2771–2778, 1992.

    PubMed  CAS  Google Scholar 

  • Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence at 77 K among vascular plants of diverse origins. - Planta 170: 489–504, 1987.

    Article  Google Scholar 

  • Čatský, J.: Determination of water deficit in discs cut out from leaf blades. - Biol. Plant. 2: 76–77, 1960.

    Article  Google Scholar 

  • Chaves, M.M.: Effects of water deficits on carbon assimilation. - J. exp. Bot. 42: 1–16, 1991.

    Article  CAS  Google Scholar 

  • Chaves, M.M., Maroco, J.P., Pereira, J.P.: Understanding plant responses to drought — from genes to the whole plant. - Funct. Plant Biol. 30: 239–264, 2003.

    Article  CAS  Google Scholar 

  • Cherian, S., Reddy, P.M., Ferreira, R.B.: Transgenic plants with improved dehydration-stress tolerance: progress and future prospects - Biol. Plant. 50: 481–495, 2006.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B.: Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. - Biochem. biophys. Acta 1020: 1–24, 1990.

    Article  CAS  Google Scholar 

  • Jeuffroy, M.H., Ney, B.: Crop physiology and productivity. - Field Crops Res. 53: 3–16, 1997.

    Article  Google Scholar 

  • Genty, B., Briantais, J.M., Baker, J.M.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. biophys. Acta 90: 87–92, 1989.

    Article  Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water-culture method for growing plants without soil. - Calif. agr. exp. Sta. Circular 347: 1–39, 1950.

    Google Scholar 

  • Hussain, S.S., Iqbal, M.T., Arif, M.A., Amjad, M.: Beyond osmolytes and transcription factors: drought tolerance in plants via protective proteins and aquaporins. - Biol. Plant. 55:401–413, 2011.

    Article  CAS  Google Scholar 

  • Hutin, C., Nussaume, L., Moise, N., Moya, I., Kloppstech, K., Havaux, M.: Early light-induced proteins protect Arabidopsis from photoxidative stress. - PNAS 100: 4921–4926, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kitajima, M., Butler, W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. - Biochim. biophys. Acta 376: 105–115, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Kogami, H., Shono, M., Koike, T., Yanagisawa, S., Izui, K., Sentoku, N., Tanifuji, S., Uchimiya H., Toki, S.: Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. - Transgenic Res. 3: 287–296, 1994.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Lindahl, M., Funk, C., Webster, J., Bingsmark, S., Adamska, I., Andersson, B.: Expression of ELIPs and PS II-S protein in spinach during acclimative reduction of the photosystem II antenna in response to increased light intensities. - Photosynth. Res. 54: 227–236, 1997.

    Article  CAS  Google Scholar 

  • Montané, M., Kloppstech, K.: The family of light-harvesting-related proteins (LHCs, ELIPs, HILPs): was the harvesting of light their primary function? - Gene 258: 1–8, 2000.

    Article  PubMed  Google Scholar 

  • Montané, M.H., Dreyer, S., Triantaphylides, C., Kloppstech, K.: Early light-inducible proteins during long-term acclimation of barley to photooxidative stress caused by light and cold: high level of accumulation by posttranscriptional regulation. - Planta 202: 293–302, 1997.

    Article  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture. - Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Nunes, C., Araújo, S.S., Silva, J.M., Fevereiro, M.P.S., Silva, A.B.: Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. - Environ. exp. Bot. 63: 289–296, 2008.

    Article  CAS  Google Scholar 

  • Nunes, C., Araújo, S.S., Silva, J.M., Fevereiro, M.P.S., Silva, A.B.: Photosynthesis light curves: a method for screening water deficit resistance in the model legume Medicago truncatula. - Ann. appl. Biol. 155: 321–332, 2009.

    Article  Google Scholar 

  • Ristic, Z., Cass, D.D.: Chloroplast structure after water shortage and high temperatue in two lines of Zea mays L. that differ in drought resistance. - Bot. Gaz. 152: 186–184, 1991.

    Article  Google Scholar 

  • Rose, R.: Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. - Funct. Plant Biol. 35: 253–264, 2008.

    Article  Google Scholar 

  • Schreiber, U. (ed): Chlorophyll Fluorometer PAM-200 (Teaching PAM) and Data Acquisition Software DA-TEACH. - Heinz Walz GmbH, Effeltrich 1997.

    Google Scholar 

  • Zeng, Q., Chen, X., Wood, A.J.: Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity, and high light. - J. exp. Bot. 53: 1197–1205, 2002

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Araújo.

Additional information

Acknowledgements: We thank Prof. D. Bartels (IMBIO, Germany) for kindly providing the Dsp22 cDNA clone from Craterostigma plantagineum, Dr. V. Gemas (ITQB, Portugal) for support in statistical analysis and Dr A.M. De Almeida (IICT, Portugal) for critically reviewing the manuscript. This research was supported by Fundação para a Ciência e Tecnologia (Lisbon, Portugal), in the form of fellowships (S.S. Araújo BD/5225/2001 and Ciência 2008 Research Contract; A.S. Duque BPD/74784/2010, and D. Santos BPD/21968/2005 and Ciência 2007 Research Contract) and research project POCTI/BIO/56659/2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, S.S., Duque, A.S., Silva, J.M. et al. Water deficit and recovery response of Medicago truncatula plants expressing the ELIP-like DSP22. Biol Plant 57, 159–163 (2013). https://doi.org/10.1007/s10535-012-0235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0235-7

Additional key words

Navigation