Skip to main content
Log in

Boron-aluminum interactions affect organic acid metabolism more in leaves than in roots of Citrus grandis seedlings

  • Published:
Biologia Plantarum

Abstract

Sour pummelo (Citrus grandis) seedlings were irrigated with nutrient solution containing four boron concentrations (i.e., 2.5, 10, 25 and 50 μM H3BO3) and two aluminum concentrations [i.e., 0 (-Al) and 1.2 mM AlCl3 · 6 H2O (+Al)]. It was found that B did not affect, but Al increased, the Al content in the roots. The Al and citrate contents in the -Al leaves either did not change or slightly increased with increasing B concentration. On the other hand, the Al and citrate contents in the +Al leaves rapidly decreased as B concentration increased from 2.5 to 50 μM, then decreased at the highest B concentration. The Al and citrate contents were higher in the +Al than in the -Al leaves, except for at 25 μM B when they were similar. The leaf malate content did not change in response to B or Al, except for an increase in the +Al leaves and a decrease in the -Al leaves at 2.5 μM B. Similarly, the root malate and citrate contents did not change in response to B with or without Al, except for a decrease in the malate and citrate contents in the +Al roots at 50 μM B and an increase in the citrate content in the -Al roots at 50 μM B. The activities of acid-metabolizing enzymes were less affected by B-Al interactions in the roots than in the leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACO:

aconitase

CS:

citrate synthase

NAD-MDH:

NAD-malate dehydrogenase

NADP-IDH:

NADP-isocitrate dehydrogenase

NADP-ME:

NADP-malic enzyme

OA:

organic acid

PEPC:

phosphoenolpyruvate carboxylase

PEPP:

phosphoenolpyruvate phosphatase

PK:

pyruvate kinase

Pyr:

pyruvate

References

  • Chen, L.-S., Nose, A.: A Comparative study on diurnal changes in metabolite levels in the leaves of three Crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoë daigremontiana and K. pinnata. — J. exp. Bot. 53: 341–350, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.-S., Tang, N., Jiang, H.-X., Yang, L.-T., Li, Q., Smith, B.R.: Changes in organic acid metabolism differ between roots and leaves of Citrus grandis in response to phosphorus and aluminum interactions. — J. Plant Physiol. 166: 2023–2034, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Corrales, I., Poschenrieder, C., Barceló, J.: Boron-induced amelioration of aluminum toxicity in a monocot and a dicot species. — J. Plant Physiol. 165: 504–513, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Delhaize, E., Hebb, D.M., Ryan, P.R.: Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. — Plant Physiol. 125: 2059–2067, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Deng, W., Luo, K., Li, Z., Yang, Y., Hu, N., Wu, Y.: Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance. — Planta 230: 355–365, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, S.B., Sutter, T.R.: Microarray analysis of Arabidopsis genome response to aluminum stress. — Biol. Plant. 53: 85–99, 2009.

    Article  CAS  Google Scholar 

  • Han, S., Chen, L.-S., Jiang, H.-X., Smith, B.R., Yang, L.-T., Xie, C.-Y.: Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. — J. Plant Physiol. 165: 1331–1341, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, P.H.: Effect of initial pH, phosphate, and silicate on the determination of aluminum with aluminon. — Soil Sci. 96: 230–238, 1963.

    Article  CAS  Google Scholar 

  • Jiang, H.-X., Tang, N., Zheng, J.-G., Chen, L.-S.: Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings. — BMC Plant Biol. 9: 102, 2009a.

    Article  PubMed  Google Scholar 

  • Jiang, H.-X., Tang, N., Zheng, J.-G., Li, Y., Chen, L.-S.: Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. — Physiol. Plant. 137: 298–311, 2009b.

    Article  PubMed  CAS  Google Scholar 

  • Kochian, L.V., Hoekenga, O.A., Piñeros, M.A.: How do crop plant tolerance acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. — Annu. Rev. Plant Biol. 55: 459–493, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kowalenko, C.G., Lavkulich, L.M.: A modified curcumin method for boron analysis of soil extracts. — Can. J. Soil Sci. 56: 537–539, 1976.

    Google Scholar 

  • LeNoble, M.E., Blevins, D.G., Sharp, R.E., Cumbie, B.G.: Prevention of aluminum toxicity with supplemental boron. 1. Maintenance of root elongation and cellular structure. — Plant Cell Environ. 19: 1132–1142, 1996.

    Article  CAS  Google Scholar 

  • Li, X.F., Ma, J.F., Matsumoto, H.: Pattern of Al-induced secretion of organic acids differs between rye and wheat. — Plant Physiol. 123: 1537–1543, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.F., Ryan, P.R., Delhaize, E.: Aluminum tolerance in plants and the complexing role of organic acids. — Trends Plant Sci. 6: 273–278, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, G., Römheld, V.: Root excretion of carboxylic acids and protons in phosphorus-deficient plants. — Plant Soil 211: 121–130, 1999.

    Article  CAS  Google Scholar 

  • O’Neill, M.A., Ishii, T., Albersheim, P., Darvill, A.G.: Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. — Annu. Rev. Plant Biol. 55: 109–139, 2004.

    Article  PubMed  Google Scholar 

  • Ryan, P.R., Delhaize, E., Randall, P.J.: Characterization of Alstimulated efflux of malate from the apices of Al-tolerant wheat roots. — Planta 196: 103–110, 1995.

    Article  CAS  Google Scholar 

  • Schmohl, N., Horst, W.J.: Cell wall pectin content modulates aluminum sensitivity of Zea mays L. cells grown in suspension culture. — Plant Cell Environ. 23: 735–742, 2000.

    Article  CAS  Google Scholar 

  • Stass, A., Kotur, Z., Horst, W.J.: Effect of boron on the expression of aluminum toxicity in Phaseolus vulgaris. — Physiol. Plant. 131: 283–290, 2007.

    PubMed  CAS  Google Scholar 

  • Watanabe, W., Osaki, M.: Role of organic acids in aluminum accumulation and plant growth in Melastoma malabathricum. — Tree Physiol. 22: 785–792, 2002.

    PubMed  CAS  Google Scholar 

  • Yang, Z.M., Nian, H., Sivaguru, M., Tanakamaru, S., Matsumoto, H.: Characterization of aluminum induced citrate secretion in aluminum tolerant soybean (Glycine max) plants. — Physiol. Plant. 113: 64–71, 2001

    Article  CAS  Google Scholar 

  • Yu, M., Shen, R., Xiao, H., Xu, M., Wang, H., Wang, H., Zeng, Q., Bian, J.: Boron alleviates aluminum toxicity in pea (Pisum sativum). — Plant Soil 314: 87–98, 2009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 30771487), the Agriculture Commonweal Industrial Special Fund Program of Department of Agriculture, China (nyhyzx07-023) and the Natural Science Foundation of Fujian, China (Nos. B0710011 and 2007J0050). The authors wish to thank Professor Frank Huang, Fujian Agriculture and Forestry University, for language correction and constructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. -S. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, N., Jiang, H.X., Yang, L.T. et al. Boron-aluminum interactions affect organic acid metabolism more in leaves than in roots of Citrus grandis seedlings. Biol Plant 55, 681–688 (2011). https://doi.org/10.1007/s10535-011-0168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0168-6

Additional key words

Navigation