Skip to main content
Log in

Inducible and constitutive expression of HvCBF4 in rice leads to differential gene expression and drought tolerance

  • Published:
Biologia Plantarum

Abstract

The effects of the ectopic expression of a barley transcription factor (HvCBF4) under the control of a constitutive (maize Ubi1) or a stress-inducible (Arabidopsis RD29A) promoter in the abiotic stress response in rice (Oryza sativa L.) was investigated. The transformed plants were analyzed both at molecular and physiological level and the AtRD29A::HvCBF4 plants were further analyzed using the GeneChip® rice genome array under control conditions. Only the plants constitutively expressing HvCBF4 have shown increased survival to drought stress, but not to cold or high-salinity. These plants have also shown better photosynthetic capacity, as determined by chlorophyll fluorescence. Plants expressing AtRD29A::HvCBF4 did not show increased survival to any of the stresses applied. However in the GeneChip® microarray, these plants have shown up-regulation of many stress-responsive genes (> 400) as compared to non-transformed plants. Interestingly, RT-PCR analysis revealed not only differential gene expression between roots and shoots, but also between transgenic lines with the different promoters. Our results indicate that different HvCBF4 expression levels resulted in different transcriptomes and drought tolerance. Given that AtRD29A::HvCBF4 plants did not show increased tolerance to any of the imposed stresses, we may conclude that this promoter may be inappropriate for rice transformation aiming for enhanced abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΦPS2 :

efficiency of the photosystem 2 photochemistry

ETR:

electron transfer rate

qP:

photochemical quenching

qN:

non-photochemical quenching

RWC:

relative water content

References

  • Agarwal, P.K., Jha, B.: Transcription factors in plants and ABA dependent and independent abiotic stress signalling. — Biol. Plant. 54: 201–212, 2010.

    Article  CAS  Google Scholar 

  • Baker, S.S., Wilhelm, K.S., Thomashow, M.F.: The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. — Plant mol. Biol. 24: 701–713, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Barr, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficit in leaves. — Aust. J. biol. Sci. 15: 413–428, 1962.

    Google Scholar 

  • Behnam, B., Kikuchi, A., Celebi-Toprak, F., Kasuga, M., Yamaguchi-Shinozaki, K., Watanabe, K.N.: Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato. — Plant Cell Rep. 26: 1275–1282, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur, P., Devi, M.J., Reddy, D.S., Lavanya, M., Vadez, V., Serraj, R., Yamaguchi-Shinozaki, K., Sharma, K.K.: Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. — Plant Cell Rep. 26: 2071–2082, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, J.S.: Plant productivity and environment. — Science 218: 443–448, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.W., Rodriguez, E.M., Close, T.J.: Barley Cbf3 gene identification, expression pattern, and map location. — Plant Physiol. 129: 1781–1787, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, A.H., Quail, P.H.: Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. — Transgenic Res. 5: 213–218, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Cullings, K.W.: Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. — Mol. Ecol. 1: 233–240, 1992.

    Article  CAS  Google Scholar 

  • Doyle, J.J., Doyle, J.L.: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. — Phytochem. Bull. 19: 11–15, 1987.

    Google Scholar 

  • Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. — Plant J. 33: 751–763, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A., Baker, N.R.: Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. — Plant Physiol. 116: 571–580, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Garg, A.K., Kim, J.K., Owens, T.G., Ranwala, A.P., Choi, Y.D., Kochian, L.V., Wu, R.J.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. — Proc nat. Acad. Sci. USA 99: 15898–15903, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., Thomashow, M.F.: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. — Plant Physiol. 124: 1854–1865, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., Thomashow, M.F.: Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. — Plant J. 16: 433–442, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z.: Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. — Plant Physiol. 130: 639–648, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T., Kumashiro, T.: Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. — Plant J. 6: 271–282, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, T.H., Lee, J.T., Charng, Y.Y., Chan, M.T.: Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. — Plant Physiol. 130: 618–626, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X.J., Zhang, Z.B., Xu, P., Fu, Z.Y., Hu, S.B., Song, W.Y.: Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. — Biol. Plant. 54: 213–223, 2010.

    Article  CAS  Google Scholar 

  • Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. — Plant Cell Physiol. 47: 141–153, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., Thomashow, M.F.: Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. — Plant Physiol. 127: 910–917, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. — Science 280: 104–106, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. — Nat. Biotechnol. 17: 287–291, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kasuga, M., Miura, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. — Plant Cell Physiol. 45: 346–350, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. — Plant Cell 10: 1391–1406, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. — J. exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, K., Yamaguchi-Shinozaki, K.: Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. — Physiol. Plant. 126: 62–71, 2006.

    Article  CAS  Google Scholar 

  • Oh, S.J., Kwon, C.W., Choi, D.W., Song, S.I., Kim, J.K.: Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. — Plant Biotechnol. J. 5: 646–656, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M., Kim, Y.K., Nahm, B.H., Kim, J.K.: Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. — Plant Physiol. 138: 341–351, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ono, A., Izawa, T., Chua, N.H., Shimamoto, K.: The rab16B promoter of rice contains two distinct abscisic acidresponsive elements. — Plant Physiol. 112: 483–491, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R.M., Almeraya, R., Yamaguchi-Shinozaki, K., Hoisington, D.: Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. — Genome 47: 493–500, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Pino, M.T., Skinner, J.S., Park, E.J., Jeknic, Z., Hayes, P.M., Thomashow, M.F., Chen, T.H.: Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. — Plant Biotechnol. J. 5: 591–604, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Rueb, S., Leneman, M., Schilperoort, R.A., Hensgens, L.A.M.: Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa L.). — Plant Cell Tissue Organ Cult. 36: 259–264, 1994.

    Article  Google Scholar 

  • Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and highsalinity stress conditions. — Plant Physiol. 136: 2734–2746, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Savitch, L.V., Allard, G., Seki, M., Robert, L.S., Tinker, N.A., Huner, N.P., Shinozaki, K., Singh, J.: The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. — Plant Cell Physiol. 46: 1525–1539, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. — Plant Cell 13: 61–72, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, J.S., Von Zitzewitz, J., Szucs, P., Marquez-Cedillo, L., Filichkin, T., Amundsen, K., Stockinger, E.J., Thomashow, M.F., Chen, T.H., Hayes, P.M.: Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. — Plant mol. Biol. 59: 533–551, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J., Thomashow, M.F.: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. — Proc. nat. Acad. Sci. USA 94: 1035–1040, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., Kumar, S.: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. — Mol. Biol. Evol. 24: 1596–1599, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow, M.F.: plant cold acclimation: freezing tolerance genes and regulatory mechanisms. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. — Curr. Opin. Biotechnol. 17: 113–122, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., Thomashow, M.F.: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. — Plant J. 41: 195–211, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Vinocur, B., Altman, A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. — Planta 218: 1–14, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Xue, G.P.: The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of lowtemperature responsive genes in barley is modulated by temperature. — Plant J. 33: 373–383, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. — Plant Cell 6: 251–264, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, S., Forno, D.A., Cock, J.H., Gomez, K.A.: Laboratory Manual for Physiological Studies of Rice. — International Rice Research Institute, Manila 1976.

    Google Scholar 

  • Zhang, J.Z., Creelman, R.A., Zhu, J.K.: From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. — Plant Physiol. 135: 615–621, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Fundação para a Ciência e a Tecnologia and Fundo Social Europeu through a PhD (SFRH/BD/10615/2002) and Post-Doc fellowships (SFRH/BPD/14541/2003) to TL and NS, respectively, and for the research project POCTI/BIA-BCM/56063/2004. The authors would also like to acknowledge Dr. Timothy Close (University of California, Riverside, USA) for the HvCBF4 clone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lourenço, T., Saibo, N., Batista, R. et al. Inducible and constitutive expression of HvCBF4 in rice leads to differential gene expression and drought tolerance. Biol Plant 55, 653 (2011). https://doi.org/10.1007/s10535-011-0164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10535-011-0164-x

Additional key words

Navigation