Skip to main content
Log in

Glutathione and phytochelatin contents in tomato plants exposed to cadmium

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The effect of cadmium on growth and contents of glutathione (GSH) and phytochelatins (PCs) were investigated in roots and leaves of tomato plants (Lycopersicon esculentum Mill. cv. 63/5 F1). The accumulation of Cd increased with external Cd concentrations and was considerably higher in roots than in leaves. Dry mass production decreased under Cd treatment especially in leaves. In both roots and leaves, exposure to Cd caused an appreciable decline in GSH contents and increase in PCs synthesis proportional to Cd concentrations in the growth medium. At the same Cd concentration, PCs production was higher in roots than in leaves. The implication of glutathione in PC synthesis was strongly suggested by the use of buthionine sulfoximine (BSO). The major fraction of Cd accumulated by tomato roots was in the form of a Cd-PCs complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSO:

buthionine sulfoximine

GSH:

glutathione

NPT:

nonprotein thiol

PCs:

phytochelatins

TBARS:

thiobarbituric acid reactive substances

References

  • Agrawal, V., Sharma, K.: Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysenterica.-Biol. Plant. 50: 307–310, 2006.

    Article  CAS  Google Scholar 

  • Alia, K.V.S.K., Prasad, P., Pardha Saradhi, P.: Effect of zinc on free radicals and proline in Brassica and Cajanus.-Phytochemistry 42: 45–47, 1995.

    Article  Google Scholar 

  • Anderson, M.E.: Determination of glutathione and glutathione disulfide in biological samples.-Methods Enzymol. 113: 548–555, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Arbona, V., Flors, V., Garcia-Agustin, P., Gomez-Cadenas, A.: Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, salt-sensitive citrus rootstock, to different levels of salinity.-Plant Cell Physiol. 44: 388–394, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ben Ammar, W., Nouairi, I., Tray, B., Zarrouk, M., Jemal, F., Ghorbal, M.H.: Effets du cadmium sur l’accumulation ionique et les teneurs en lipides dans les feuilles de tomate (Lycopersicon esculentum).-J. Soc. Biol. 199: 157–163, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Buege, A.J., Aust, S.D.: Microsomal lipid peroxidation,-Method Enzymol. 52: 302–310, 1972.

    Article  Google Scholar 

  • Clemens, S.: Molecular mechanisms of plant metal tolerance and homeostasis.-Plant 212: 475–486, 2001.

    Article  CAS  Google Scholar 

  • Clemens, S.: Evolution and function of phytochelatin synthase.-J. Plant Physiol. 163: 319–332, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, C.S.: Phytochelatin biosynthesis and function in heavy-metal detoxification.-Curr. Opin. Plant Biol. 3: 211–216, 2000.

    PubMed  CAS  Google Scholar 

  • De Pinto, M.C., Tommasi, F., De Gara, L.: Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco bright yellow (BY-2 line).-Plant Physiol. Biochem. 38: 541–550, 2000.

    Article  Google Scholar 

  • De Vos, C.H., Marjolein, R.V.J., Vooijs, R., Schat, H.: Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus.-Plant Physiol. 98: 853–858, 1992.

    Article  PubMed  Google Scholar 

  • Drazić, G., Mihailović, N., Lojić, M.: Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid.-Biol. Plant. 50: 239–244, 2006.

    Article  Google Scholar 

  • Ellman, G.L.: Tissue sulfhydryl groups.-Arch. Biochem. Biophys. 82: 70–77, 1959.

    Article  PubMed  CAS  Google Scholar 

  • Gouia, H., Suzuki, A., Brultfert, J., Ghorbal, M.H.: Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings.-J. Plant Physiol. 160: 367–376, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Grill, E., Winnacker, E., Zenk, M.H.: Phytochelatins the principal heavy-metal complexing peptides of higher plants.-Science 230: 674–676, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Ha, S.B., Smith, A.P., Howden, R., Dietrich, W.H., Bugg, S., O’Connell, M.J., Goldsbrough, P.B., Cobbet, C.S.: Phytochelatin synthase genes from Arabidopsis and yeast Schizosaccharomyces pombe.-Plant Cell. 11: 1153–1164, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Hall J.L.: Cellular mechanisms for heavy metal detoxification and tolerance.-J. exp. Bot. 53: 1–11. 2002.

    Article  PubMed  CAS  Google Scholar 

  • Inouhe, M.: Phytochelatins.-Braz. J. Plant Physiol. 17: 65–78, 2005.

    Article  CAS  Google Scholar 

  • Jemal, F., Didierjean, L., Ghrir, R., Ghorbal, M.H., Burkard, G.: Characterization of cadmium binding peptides from pepper (Capsicum annuum).-Plant Sci. 137: 143–154, 1998.

    Article  CAS  Google Scholar 

  • Krupa, Z.., Öquist, G., Huner, N.P.A.: The effects of cadmium on photosynthesis of Phaseolus vulgaris. A fluorescence analysis.-Physiol. Plant. 88: 626–630, 1993.

    Article  CAS  Google Scholar 

  • Li, Y., Parkash, O.D., Laura, C., David, L., Alice, C., Julian, I.S., Rebecca, S.B., Richard, B.M.: Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.-Plant Cell Physiol. 45: 1787–1797, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Meneguzzo, S., Navari-Izzo, F., Izzo, R.: Antioxidant responses of shoots and roots of wheat to increasing NaCl concentrations.-J. Plant. Physiol. 155: 274–280, 1999.

    CAS  Google Scholar 

  • Nocito, F., Pirovano, L., Cocucci, M., Sacchi, A.: Cadmium-induced sulfate uptake in maize roots.-Plant Physiol. 129: 1872–1879, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control.-Annu Rev. Plant Physiol. Plant mol. Biol. 49: 249–279, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., Gomez, L., Vanacker, H., Foyer, C.H.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling.-J. exp. Bot. 53: 1283–1304, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nouairi, I., Ben Ammar, W., Ben Youssef, N., Ben Miled Daoud, D., Ghorbal, M.H., Zarrouk, M.: Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves.-Plant Sci. 170: 511–519, 2005.

    Article  CAS  Google Scholar 

  • Pietrini, F., Iannelli, M.A., Pasqualini, S., Massacci, A.: Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis.-Plant Physiol. 133: 829–837, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Rauser, W.E.: Phytochelatins and related peptides. Structure, biosynthesis and function.-Plant Physiol. 109: 1141–1149, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Rea, P.A., Li, Z.S., Lu, Y.P., Drozodowicz, Y.M., Martinoia, E.: From vacuolar GS-X pumps to multispecific ABC transporters.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 727–760, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg, H.: Glutathione metabolism and possible biological roles in higher plants.-Phytochemistry 21: 2771–2781, 1982.

    Article  CAS  Google Scholar 

  • Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., Del Rio, L.A.: Cadmium induced changes in the growth and oxidative metabolism of pea plants.-J. exp. Bot. 152: 2115–2126, 2001.

    Google Scholar 

  • Scarano, G., Morelli, E.: Characterization of cadmium and lead-phytochelatins complexes formed in marine microalgae in response to metal exposure.-BioMetals 15: 145–151, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Scebba, F., Arduini, I., Ercoli, L., Sebastiani, L.: Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis.-Biol. Plant. 50: 688–692, 2006.

    Article  CAS  Google Scholar 

  • Xiang, C., Werner, B.L., Christensen, E.M., Oliver, D.J.: The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels.-Plant Physiol. 126: 564–574, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Yu, C..W., Murphy, T.M., Sung, W.W., Lin, C.H.: H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean.-Funct. Plant Biol. 29: 1081–1087, 2002.

    Article  CAS  Google Scholar 

  • Yurekli, F., Unyayar, A., Porgali, Z.B., Mazmanci, M.A.: Effects of cadmium exposure on phytochelatin and the synthesis of abscisic acid in Funalia trogii.-Eng. Life Sci. 4: 478–380, 2004.

    Article  CAS  Google Scholar 

  • Zhu, O.Y.L., Pilon-Smits, E.A.H., Jouanin, l., Terry, N.: Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance.-Plant Physiol. 119: 73–79, 1999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ben Ammar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Ammar, W., Mediouni, C., Tray, B. et al. Glutathione and phytochelatin contents in tomato plants exposed to cadmium. Biol Plant 52, 314–320 (2008). https://doi.org/10.1007/s10535-008-0065-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-008-0065-9

Additional key words

Navigation