Skip to main content

Advertisement

Log in

The role of apoptosis and autophagy in the insulin-enhancing activity of oxovanadium(IV) bipyridine complex in streptozotocin-induced diabetic mice

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Metal-based therapies (e.g. Vanadium) possess an attractive proposition in medicinal treatment of diabetes mellitus. Defective insulin secretion can result from impaired β-cell function which is mediated by many process including apoptosis and autophagy. In this study. diabetes was induced by administration of streptozotocin then treatment was performed by vanadyl sulfate and [VO(bpy)2 Cl] Cl.H2O complex. Blood glucose level, AST, ALT, BUN, CR, TCHO, TG and total protein were determined in serum. MDA, NO, erythrocyte GSH and SOD were estimated. LC3 and Caspase 3 levels in pancreatic cells were assessed by flow cytometer. Histopathological investigation of pancreatic tissue was performed. Results of Diabetic group showed a significant increase in transaminases activities, TCHO, TG, MDA, NO and Caspase 3 levels and significant decrease in TP, GSH, SOD and LC3 levels. Oral administration of vanadium complex resulted in normoglycemia, significant increase in blood GSH, SOD, TP and LC3 levels, significant decrease in ALT, AST, BUN, TCHO, TG, MDA and NO and Caspase 3 levels. In addition, proliferative effect of complex prevents islet atrophy. From previous results, the insulin-enhancing effect induced by this complex indicated that this new complex can be a valuable candidate as insulin-enhancing and antioxidant compound than inorganic vanadyl sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Mohsen MA, Abdel Malak CA, Abou Yossef MA, El-Shafey ES (2017) Antitumor activity of copper (I)–nicotinate complex and autophagy modulation in HCC1806 breast cancer cells. Anticancer Agents Med Chem 24(17(11):1526–1536

    Google Scholar 

  • Abdel-Mohsen MA, Toson EA, Helal MA (2019a) Oncostatic treatment effect of triple negative breast cancer cell line with copper (I)-nicotinate complex. J Cell Biochem 120(3):4278–4290

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Mohsen MA, Abdel Malak CA, El-Shafey ES (2019b) Influence of copper (I) nicotinate complex and autophagy modulation on doxorubicin- induced cytotoxicity in HCC1806 breast cancer cells. Adv Med Sci 64(1):202–209

    Article  PubMed  Google Scholar 

  • Abirami N, Arulmozhi R, Sivakami M (2015) Recent advances in diabetes treatment. In: The Role of Metal Complexes in the Treatment of Diabetes Mellitus-An Overview. AVID Science Publications, Hyderabad, pp 1–20

  • Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S (2017) Oxidative toxicity in diabetes and Alzheimer’s disease: mechanisms behind ROS/ RNS generation. J Biomed Sci 24(1):76. https://doi.org/10.1186/s12929-017-0379-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadi S, Karimian SM, Sotoudeh M, Bahadori M, Dehghani GA (2010) Pancreatic islet beta cell protective effect of oral vanadyl sulphate in streptozotocin-induced diabetic rats, an ultrastructure study. Pakistan J Biol Sci 13(23):1135–1140

    Article  CAS  Google Scholar 

  • Ahmed HH, Toson EA, El-mezayen HA, Rashed LA, Elsherbiny ES (2017) Role of mesenchymal stem cells versus angiotensin converting enzyme inhibitor in kidney repair. Nephrology 22(7):531–540

    Article  CAS  PubMed  Google Scholar 

  • Asmat U, Abad K, Ismail K (2015) Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J 24(5):547–553. https://doi.org/10.1016/j.jsps.2015.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagchi A, Mukherjee P, Raha A (2015) A review on transition metal complex- mordern weapon in medicine. Int J Recent Adv Pharm Res 5(3):171–180

    Google Scholar 

  • Beutler E, Duron O, Kefly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Cade WT (2008) Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 88(11):1322–1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S (2017) Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 6(9):943–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crans DC, Antidiabetic (2015) Chemical, and physical properties of organic vanadates as presumed transition-state inhibitors for phosphatases. J Org Chem 80:11899–11915

    Article  CAS  PubMed  Google Scholar 

  • Crans DC, Henry L, Cardiff G, Posner BI (2019) Developing vanadium as an antidiabetic or anticancer drug: a clinical and historical perspective. Met Ions Life Sci 2019:19

    Google Scholar 

  • De Chatelet LR, McCall CE, McPhail LC, Johnston RB Jr (1974) Superoxide dismutase activity in leukocytes. J Clin Invest 53(4):1197–1201

    Article  Google Scholar 

  • Drury RAB, Wallington EA (1980) Carleton’s histological techniques, 5th edn. Oxford University Press, London

    Google Scholar 

  • Ejelonu BC (1980) Metal complexes: effective approach for the management of diabetes mellitus. Eur J Biomed Pharm sci 3(9):211–217

    Google Scholar 

  • El-Shafey E, El-Sayed I, El-hendawy A (2012) Biochemical study on insulin mimetic activity of oxovanadium complexes. Master thesis, Damietta University

  • El-Shafey ES, Elsherbiny ES (2019a) Dual opposed survival-supporting and death-promoting roles of autophagy in cancer cells: a concise review. Curr Chem Biol 68(1):141–154

    Google Scholar 

  • El-Shafey ES, Elsherbiny ES (2019b) Possible selective cytotoxicity of vanadium complex on breast cancer cells involving pathophysiological pathways. Anti-Cancer Agents Med Chem 19:1. https://doi.org/10.2174/1871520619666191024122117

    Article  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: A review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francik R, Kro´sniak M, Barlik M, Kudła A, Grybo´s R, Librowski T (2011) Impact of vanadium complexes treatment on the oxidative stress factors in wistar rats plasma. Bioinorg Chem Appl 1:206316

    Google Scholar 

  • Fukai T, Ushio- Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goud BJ, Dwarakanath V, Chikkaswamy BK (2015) Streptozotocin-A diabetogenic agent in animal models. Ijppr Human 3(1):253–269

    CAS  Google Scholar 

  • Grote CW, Wright DE (2016) A role for insulin in diabetic neuropathy. Front Neurosci 10:581. https://doi.org/10.3389/fnins.2016.00581

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta D, Raju J, Prakash J, Baquer NZ (1999) Change in the lipid profile, lipogenic and related enzymes in the livers of experimental diabetic rats: effect of insulin and vanadate. Diabetes Res Clin Pract 46(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Han HS, Kang G, Kim JS, Choi BH, Koo SH (2016) Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med 48(3):e218. https://doi.org/10.1038/emm.2015.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Liu F, Zhang F, Liu P, Xu T, Ding W (2018) Vanadium(IV)-chlorodipicolinate alleviates hepatic lipid accumulation by inducing autophagy via the LKB1/AMPK signaling pathway in vitro and in vivo. J Inorg Biochem 183:66–76

    Article  CAS  PubMed  Google Scholar 

  • Kanter M, Coskun O, Korkomaz A, Oter S (2004) Effects of Nigella sativa on oxidative stress and beta-cell damage in streptozotocin-induced diabetic rats. Anat Rec A Discov Mol Cell Evol Biol 279:685–691

    Article  PubMed  CAS  Google Scholar 

  • Kordowiak AM, Dabros W, Kajda B (2002) Bis (2,2’bipyridine) oxovanadium (IV) influence on liver golgi apparatus. Horm Metab Res 34:556–560

    Article  CAS  PubMed  Google Scholar 

  • Las G, Shirihai OS (2010) The role of autophagy in β-cell lipotoxicity and type 2 diabetes. Diabetes Obes Metab 12(Suppl 2(0 2):15–19. https://doi.org/10.1111/j.1463-1326.2010.01268.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Wei D, Ding W, Baruah B, Crans DC (2008) Anti-diabetic effects of cesium aqua (N, N ′-ethylene(salicylideneiminato)-5-sulfonato) oxovanadium (IV)dihydrate in streptozotocin-induced diabetic rats. Biol Trace Elem Res 121(3):226–232

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu J, Gu o Y, Xue Y, Wang J, Xue C (2015) Ameliorative effect of vanadyl(IV)–ascorbate complex on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, and oxidative stress in mice. J Trace Elem Med Biol 32:155–161

    Article  CAS  PubMed  Google Scholar 

  • Lyonnet B, Martz X, Martin E (1899) L’emploi therapeutique des derives du vanadium. La Presse Méd 32:191–192

    Google Scholar 

  • Maanvizhi S, Boppana T, Krishnan C, Arumugam G (2014) Metal complexes in the management of diabetes mellitus: a new therapeutic strategy. Int J Pharm Pharm Sci 6(7):40–44

    CAS  Google Scholar 

  • Manchester KL (1961) Insulin and incorporation of amino acids into protein ofmuscle. Cellular amino acid levels and aminoisobutyric acid uptake. Biochem J 81(1):135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marasco MR, Linnemann AK (2018) β-cell autophagy in diabetes pathogenesis. Endocrinology 159(5):2127–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazza S, Maffucci T (2014) Autophagy and pancreatic β-cells. Vitamins Hormones 95:145–164. https://doi.org/10.1016/B978-0-12-800174-5$400006-5

    Article  CAS  PubMed  Google Scholar 

  • Montgomery HAC, Dymock JF (1961) The determination of nitrate in water. Analyst 86:414–416

    CAS  Google Scholar 

  • Najafzadeh H, Rezaie A, Masoodi AM, Mehrzadi S (2011) Comparison of the effect of vanadium and deferoxamine on acetaminophen toxicity in rats. Indian J Pharmacol 43(4):429–432. https://doi.org/10.4103/0253-7613.83115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathom mechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidat Med Cell Longev 2016:3164734

    Article  CAS  Google Scholar 

  • Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1(2):87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirmoradi L, Mohammadi MT, Safaei A, Mesbah F, Dehghani GA (2014) Does the relief of glucose toxicity act as a mediator in proliferative actions of vanadium on pancreatic islet beta cells in streptozotocin diabetic rats? Iranian Biomed J 18(3):173–180

    Google Scholar 

  • Qinna NA, Badwan AA (2015) Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug Design Dev Therapy 9:2515–2525

    Article  CAS  Google Scholar 

  • Rojas J, Bermudez V, Palmar J et al (2018) Pancreatic beta cell death: novel potential mechanisms in diabetes therapy. J Diabetes Res 2018:9601801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosa MD, Distefano G, Gagliano C, Rusciano D, Malaguarnera L (2016) Autophagy in diabetic retinopathy. Curr Neuropharmacol 14(8):810–825. https://doi.org/10.2174/1570159X14666160321122900

    Article  PubMed  PubMed Central  Google Scholar 

  • Shechter Y, Goldwaser I, Mironchik M, Fridkin M, Gefel D (2003) Historic perspective and recent developments on the insulin-like actions of vanadium toward developing vanadium-based drugs for diabetes. Coord Chem Rev 237(1):3–11

    Article  CAS  Google Scholar 

  • Shukla R, Padhye S, Modak M, Ghaskadbi SS, Bhonde RR (2007) Bis(quercetinato) oxovanadium (IV)reverses metabolic changes in streptozotocin-induced diabetic mice. Rev Diabet Stud 4(1):33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui AA, Siddiqui SA, Ahmad S, Siddiqui S, Ahsan I, Sahu K (2013) Diabetes: mechanism, pathophysiology and management. Int J Drug Dev Res 5(2):1–23

    Google Scholar 

  • Soumya D, Srilatha B (2011) Late stage complications of diabetes and insulin resistance. J Diabetes Metab 2:167

    CAS  Google Scholar 

  • Stocks J, Dormandy TL (1971) The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol 20(1):95–111

    Article  CAS  PubMed  Google Scholar 

  • Tesmara A, Inkielewicz-Stępniakb I, Sikorskia A, Wyrzykowskia D, Jacewicza D, Ziębaa P, Pranczka J, Ossowskia T, Chmurzyńskia L (2015) Structure, physicochemical and biological properties of new complex salt of aqua-(nitrilotriacetato-N, O, O′, O″)-oxidovanadium(IV) anion with 1,10- phenanthrolinium cation. J Inorg Biochem 152:53–61

    Article  CAS  Google Scholar 

  • Tomita T (2015) Apoptosis in pancreatic β-cells in type 1 and type 2 diabetes. In: Islam MS (ed) Islets of Langerhans, Second Edition. Springer, Berlin, pp 845-872. https://doi.org/10.1007/978-94-007-6686-0$445

  • Toson EA, Ahmed HH, El-mezayen HM, Rashed LA, Elsherbiny ES (2019) Possible renal repairing mechanisms of mesenchymal stem cells in cyclosporine-mediated nephrotoxicity: endothelial viability and hemodynamics. Indones Biomed J 11(2):145–151

    Article  Google Scholar 

  • Willsky GR, Chi LH, Godzala M, Kostyniak PJ, Smee JJ, Trujillo AM, Alfano JA, Ding W, Hu Z, Crans DC (2011) Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coord Chem Rev 255(19–20):2258–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DK, Kang HS (2018) Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol Ther (Seoul) 26(2):130–138

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Salah El-Shafey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shafey, E.S., Elsherbiny, E.S. The role of apoptosis and autophagy in the insulin-enhancing activity of oxovanadium(IV) bipyridine complex in streptozotocin-induced diabetic mice. Biometals 33, 123–135 (2020). https://doi.org/10.1007/s10534-020-00237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-020-00237-1

Keywords

Navigation