Skip to main content

Advertisement

Log in

Oxidative stress and neurodegeneration: the involvement of iron

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson’s disease, Alzheimer’s disease, Huntington’s chorea, Amyotrophic Lateral Sclerosis and Neurodegeneration with Brain Iron Accumulation). Anyway, the extent of toxicity is dictated, in part, by the localization of the iron complex within the cell (cytosolic, lysosomal and mitochondrial), its biochemical form, i.e., ferritin or hemosiderin, as well as the ability of the cell to prevent the generation and propagation of free radical by the wide range of antioxidants and cytoprotective enzymes in the cell. Particularly, ferrous iron can act as a catalyst in the Fenton reaction that potentiates oxygen toxicity by generating a wide range of free radical species, including hydroxyl radicals (·OH). The observation that patients with neurodegenerative diseases show a dramatic increase in their brain iron content, correlated with the production of reactive oxigen species in these areas of the brain, conceivably suggests that disturbances in brain iron homeostasis may contribute to the pathogenesis of these disorders. The aim of this review is to describe the chemical features of iron in human beings and iron induced toxicity in neurodegenerative diseases. Furthermore, the attention is focused on metal chelating drugs therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaseth J, Skaug MA, Cao Y, Andersen O (2015) Chelation in metal intoxication—principles and paradigms. J Trace Elem Med Biol 31:260–266

    Article  PubMed  CAS  Google Scholar 

  • Agar J, Durham H (2003) Relevance of oxidative injury in the pathogenesis of motor neuron diseases. Amyotroph Lateral Scler Other Motor Neuron Disord 4:232–242

    Article  PubMed  CAS  Google Scholar 

  • Alazami AM, Al-Saif A, Al-Semari A, Bohlega S, Zlitni S, Alzahrani F, Bavi P, Kaya N, Colak D, Khalak H, Baltus A, Peterlin B, Danda S, Bhatia KP, Schneider SA, Sakati N, Walsh CA, Al-Mohanna F, Meyer B, Alkuraya FS (2008) Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am J Hum Genet 83:684–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alderson NL, Hama H (2009) Fatty acid 2-hydroxylase regulates cAMP-induced cell cycle exit in D6P2T schwannoma cells. J Lipid Res 50:1203–1208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    Article  PubMed  Google Scholar 

  • Andersen PM (2006) Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr Neurol Neurosci Rep 6:37–46

    Article  PubMed  CAS  Google Scholar 

  • Andrews PA (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995

    Article  PubMed  CAS  Google Scholar 

  • ApoPharma Inc (2011) Ferriprox® [Package Insert]. ApoPharma Inc, Rockville

    Google Scholar 

  • Banci L, Bertini I, Durazo A, Girotto S, Gralla EB, Martinelli M, Valentine JS, Vieru M, Whitelegge JP (2007) Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: a possible general mechanism for familial ALS. Proc Natl Acad Sci USA 104:11263–11267

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Boca M, Girotto S, Martinelli M, Valentine JS, Vieru M (2008) SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization. PLoS ONE 3:e1677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mavros C, Beyreuther K, Carrington D, Masters CL, Cherny RA, Cappai R, Bush AI (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. FASEB J 18:1427–1429

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis G, Tishler T (2000) MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntingon’s disease. Cell Mol Biol 46:821–833

    PubMed  CAS  Google Scholar 

  • Bartzokis G, Tishler TA, Shin IS, Lu PH, Cummings JL (2004) Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Ann N Y Acad Sci 1012:224–236

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis G, Tishler TA, Lu PH, Villablanca P, Altshuler LL, Carter M, Huang D, Edwards N, Mintz J (2006) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28:414–423

    Article  PubMed  CAS  Google Scholar 

  • Beard JL, Wiesinger JA, Connor JR (2003) Pre- and postweaning iron deficiency alters myelination in Sprague-dawley rats. Dev Neurosci 25:308–315

    Article  PubMed  CAS  Google Scholar 

  • Becerril-Ortega J, Bordji K, Freret T, Rush T, Buisson A (2014) Iron overload accelerates neuronal amyloid-beta production and cognitive impairment in transgenic mice model of Alzheimer’s disease. Neurobiol Aging 35:2288–2301

    Article  PubMed  CAS  Google Scholar 

  • Becker G, Berg D (2001) Neuroimaging in basal ganglia disorders: perspectives for transcranial ultrasound. Mov Disord 16:23–32

    Article  PubMed  CAS  Google Scholar 

  • Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 139(S1):179–197

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17

    Article  PubMed  Google Scholar 

  • Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Roggendorf W, Schroder U, Klein R, Tatschner T, Benz P, Tucha O, Preier M, Lange KW, Reiners K, Gerlach M, Becker G (2002) Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 59:999–1005

    Article  PubMed  Google Scholar 

  • Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64:1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Bishop GM, Robinson SR, Liu Q, Perry G, Atwood CS, Smith MA (2002) Iron: a pathological mediator of Alzheimer disease? Dev Neurosci 24:184–187

    Article  PubMed  CAS  Google Scholar 

  • Blat D, Weiner L, Youdim MB, Fridkin M (2008) A novel iron-chelating derivative of the neuroprotective peptide NAPVSIPQ shows superior antioxidant and antineurodegenerative capabilities. J Med Chem 51:126–134

    Article  PubMed  CAS  Google Scholar 

  • Bonilla E, Estevez J, Suarez H, Morales LM, de Bonilla LC, Villalobos R, Davila JO (1991) Serum ferritin deficiency in Huntington’s disease patients. Neurosci Lett 129:22–24

    Article  PubMed  CAS  Google Scholar 

  • Bozzo F, Mirra A, Carrì MT (2017) Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neurosci Lett 636:3–8

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Tredic K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73:2195–2209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carocci A, Rovito N, Sinicropi MS, Genchi G (2014a) Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol 229:1–18

    PubMed  CAS  Google Scholar 

  • Carocci A, Sinicropi MS, Catalano A, Lauria G, Genchi G (2014b) Melatonin in Parkinson’s Disease. In: Qayyum Rana A (eds) Mental and behavioural disorders and diseases of the nervous system: a synopsis of Parkinson’s disease, InTech, ISBN 978-953-51-1229-7, pp 1–29

  • Carocci A, Catalano A, Sinicropi MS (2014c) Melatonergic drugs in development. Clin Pharmacol 6:127–137

    PubMed  PubMed Central  CAS  Google Scholar 

  • Carocci A, Catalano A, Lauria G, Sinicropi MS, Genchi G (2016) Lead toxicity, antioxidant defense and environment. Rev Environ Contam Toxicol 238:45–67

    PubMed  CAS  Google Scholar 

  • Carrí MT, Ferri A, Cozzolino M, Calabrese L, Rotilio G (2003) Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull 61:365–374

    Article  PubMed  CAS  Google Scholar 

  • Chen CM (2011) Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington’s disease. Chang Gung Med J 34:135–152

    PubMed  Google Scholar 

  • Core AB, Canali S, Babitt JL (2014) Hemojuvelin and bone morphogenetic protein (BMP) signaling in iron homeostasis. Front Pharmacol 5:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costa-Mallen P, Gatenby C, Friend S, Maravilla KR, Hu S-C, Cain KC, Agarwal P, Anzai Y (2017) Brain iron concentrations in regions of interest and relation with serum iron levels in Parkinson disease. J Neurol Sci 378:38–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crichton R (2016) Iron homeostasis and neurodegeneration. In: Crichton R (ed) Iron metabolism—from molecular mechanisms to clinical consequences, 4th edn. Wiley, New York, pp 516–543

    Chapter  Google Scholar 

  • Dexter DT, Statton SA, Whitmore C, Freinbichler W, Weinberger P, Tipton KF et al (2011) Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J Neural Transm 118:223–231

    Article  PubMed  CAS  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dusek P, Schneider SA, Aaseth J (2016) Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 38:81–92

    Article  PubMed  CAS  Google Scholar 

  • Dusi S, Valletta L, Haack TB, Tsuchiya Y, Venco P, Pasqualato S, Goffrini P, Tigano M, Demchenko N, Wieland T, Schwarzmayr T, Strom TM, Invernizzi F, Garavaglia B, Gregory A, Sanford L, Hamada J, Bettencourt C, Houlden H, Chiapparini L, Zorzi G, Kurian MA, Nardocci N, Prokisch H, Hayflick S, Gout I, Tiranti V (2014) Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet 94:11–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, Legleiter J, Marsh JL, Thompson LM, Lindquist S, Muchowski PJ, Wanker EE (2006) Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 15:2743–2751

    Article  PubMed  CAS  Google Scholar 

  • Eriksen J, Dawson T, Dikson D, Petrucelli L (2003) Caught in the act: a-synuclein in the culprit in Parkinson’s disease. Neuron 40:453–456

    Article  PubMed  CAS  Google Scholar 

  • Farina M, Avila DS, Teixeira da Rocha JB, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62:575–594

    Article  PubMed  CAS  Google Scholar 

  • Fleming RE, Sly WS (2002) Mechanisms of iron accumulation in hereditary hemochromatosis. Annu Rev Physiol 64:663–680

    Article  PubMed  CAS  Google Scholar 

  • Fox JH, Kama JA, Lieberman G, Chopra R, Dorsey K, Chopra V, Volitakis I, Cherny RA, Bush AI, Hersch S (2007) Mechanisms of copper ion mediated Huntington’s disease progression. PLoS ONE 2:e334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraga CG, Oteiza PI (2002) Iron toxicity and antioxidant nutrients. Toxicology 180:23–32

    Article  PubMed  CAS  Google Scholar 

  • Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A (2017) Mercury exposure and heart diseases. Int J Environ Res Public Health 14:74

    Article  PubMed Central  CAS  Google Scholar 

  • Giannini F, Battistini S, Mancuso M, Greco G, Ricci C, Volpi N, Del Corona A, Piazza S, Siciliano G (2010) D90A-SOD1 mutation in ALS: the first report of heterozygous Italian patients and unusual findings. Amyotroph Lateral Scler 11:216–219

    Article  PubMed  CAS  Google Scholar 

  • Glickstein H, El RB, Link G, Breuer W, Konijn AM, Hershko C, Nick H, Cabantchik ZI (2006) Action of chelators in iron-loaded cardiac cells: accessibility to intracellular labile iron and functional consequences. Blood 108:3195–3203

    Article  PubMed  CAS  Google Scholar 

  • Gozzelino R, Arosio P (2016) Iron homeostasis in health and disease. Int J Mol Sci 17:1–14

    Article  CAS  Google Scholar 

  • Gregory A, Hayflick S (2011) Genetics of neurodegeneration with brain iron accumulation. Curr Neurol Neurosci Rep 11:254–261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grubman A, White AR, Liddell JR (2014) Mitochondrial metals as a potential therapeutic target in neurodegeneration. Br J Pharmacol 171:2159–2173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulec S, Anderson GJ, Collins JF (2014) Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol 307:G397–G409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hadzhieva M, Kirches E, Wilisch-Neumann A, Pachow D, Wallesch M, Schoenfeld P, Paege I, Vielhaber S, Petri S, Keilhoff G, Mawrin C (2013) Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis. Neuroscience 230:94–101

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E (1999) Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J Biol Chem 274:28849–28852

    Article  PubMed  CAS  Google Scholar 

  • Hogarth P (2015) Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord 8:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogarth P, Gregory A, Kruer MC, Sanford L, Wagoner W, Natowicz MR, Egel RT, Subramony SH, Goldman JG, Berry-Kravis E, Foulds NC, Hammans SR, Desguerre I, Rodriguez D, Wilson C, Diedrich A, Green S, Tran H, Reese L, Woltjer RL, Hayflick SJ (2013) New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology 80:268–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Imam MU, Zhang S, Ma J, Wang H, Wang F (2017) Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients 9(7):E671

    Article  PubMed  Google Scholar 

  • Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82

    Article  PubMed  CAS  Google Scholar 

  • Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, David S (2009) Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci 29:610–619

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Luan Z, Wang J, Xie J (2006) Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overload. Neurochem Int 49:605–609

    Article  PubMed  CAS  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  PubMed  CAS  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    Article  PubMed  CAS  Google Scholar 

  • Kaluza J, Wolk A, Larsson SC (2013) Heme iron intake and risk of stroke: a prospective study of men. Stroke 44:334–339

    Article  PubMed  CAS  Google Scholar 

  • Kara E, Hardy J, Houlden H (2013) The pallidopyramidal syndromes: nosology, aetiology and pathogenesis. Curr Opin Neurol 26:381–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Kicic A, Chua AC, Baker E (2001) Effect of iron chelators on proliferation and iron uptake in hepatoma cells. Cancer 92:3093–3110

    Article  PubMed  CAS  Google Scholar 

  • Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88:7–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koleski G, Petrov I, Petrova V (2007) Transcranial sonography in the evaluation of Parkinson disease. J Ultrasound Med 26:509–512

    Article  Google Scholar 

  • Koorts AM, Viljoen M (2007) Ferritin and ferritin isoforms I: structure-function relationships, synthesis, degradation and secretion. Arch Physiol Biochem 113:30–54

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord Chem Rev 256:2129–2141

    Article  CAS  Google Scholar 

  • Kulaksiz H, Fein E, Redecker P, Stremmel W, Adler G, Cetin Y (2008) Pancreatic beta cells express hepcidin, an iron-uptake regulatory peptide. J Endocrinol 197:241–249

    Article  PubMed  CAS  Google Scholar 

  • Kumar H, Lim HW, More SV, Kim BW, Koppula S, Kim IS, Choi DK (2012) The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. Int J Mol Sci 13:10478–10504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwiatek-Majkusiak J, Dickson DW, Tacik P, Aoki N, Tomasiuk R, Koziorowski D, Friedman A (2015) Relationships between typical histopathological hallmarks and the ferritin in the hippocampus from patients with Alzheimer’s disease. Acta Neurobiol Exp 75:391–398

    Google Scholar 

  • Larson JA, Howie HL, So M (2004) Neisseria meningitidis accelerates ferritin degradation in host epithelial cells to yield an essential iron source. Mol Microbiol 53:807–820

    Article  PubMed  CAS  Google Scholar 

  • Lee VM, Trojanowsky JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new target for drug discovery. Neuron 52:33–38

    Article  PubMed  CAS  Google Scholar 

  • Levi S, Finazzi D (2014) Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol 5:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li K, Reichmann H (2016) Role of iron in neurodegenerative diseases. J Neural Transm (Vienna) 123:389–399

    Article  CAS  Google Scholar 

  • Li DH, He YC, Liu J, Chen SD (2016) Diagnostic accuracy of transcranial sonography of the substantia nigra in Parkinson’s disease: a systematic review and meta-analysis. Sci Rep. https://doi.org/10.1038/srep20863

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin AM, Ho LT (2000) Melatonin suppresses iron-induced neurodegeneration in rat brain. Free Radic Biol Med 28:904–911

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Valore EV, Nemeth E, Goodnough JB, Gabayan V, Ganz T (2007) Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4. Blood 110:2182–2189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Theil EC (2005) Ferritin as an iron concentrator and chelator target. Ann N Y Acad Sci 1054:136–140

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Men P, Perry G, Smith MA (2010) Nanoparticle and iron chelators as a potential novel Alzheimer therapy. Methods Mol Biol 610:123–144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev. https://doi.org/10.1155/2017/2525967

    Article  PubMed  PubMed Central  Google Scholar 

  • Logroscino G, Gao X, Chen H, Wing A, Ascherio A (2008) Dietary iron intake and risk of Parkinson’s disease. Am J Epidemiol 168:1381–1388

    Article  PubMed  PubMed Central  Google Scholar 

  • Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–900

    Article  PubMed  CAS  Google Scholar 

  • Maharaj DS, Maharaj H, Daya S, Glass BD (2006) Melatonin and 6-hydroxymelatonin protect against iron-induced neurotoxicity. J Neurochem 96:78–81

    Article  PubMed  CAS  Google Scholar 

  • Mariani R, Arosio C, Pelucchi S, Grisoli M, Piga A, Trombini P, Piperno A (2004) Iron chelation therapy in aceruloplasminaemia: study of a patient with a novel missense mutation. Gut 53:756–758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martelli A, Wattenhofer-Donze M, Schmucker S, Bouvet S, Reutenauer L, Puccio H (2007) Frataxin is essential for extramitochondrial Fe–S cluster proteins in mammalian tissues. Hum Mol Genet 16:2651–2658

    Article  PubMed  CAS  Google Scholar 

  • Martin-Bastida A, Ward RJ, Newbould R, Piccini P, Sharp D, Kabba C, Patel MC, Spino M, Connelly J, Tricta F, Crichton RR, Dexter DT (2017) Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep 7:1398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLachlan DRC, Kruck TPA, Kalow W, Andrews DF, Dalton AJ, Bell MY, Smith WL (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337:1304–1308

    Article  Google Scholar 

  • Mehlhase J, Sandig G, Pantopoulos K, Grune T (2005) Oxidation-induced ferritin turnover in microglial cells: role of proteasome. Free Radic Biol Med 38:276–285

    Article  PubMed  CAS  Google Scholar 

  • Mena NP, Bulteau AL, Salazar J, Hirsch EC, Núñez MT (2011) Effect of mitochondrial complex I inhibition on Fe–S cluster protein activity. Biochem Biophys Res Commun 409:241–246

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, Lopez-Martin ME, Labandeira-Garcia JL (2001) Effect of iron and manganese on hydroxyl radical production by 6-hydroxydopamine: mediation of antioxidants. Free Radic Biol Med 31:986–998

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Amari M, Takatama M, Aizawa H, Mihara B, Okamoto K (2006) Transferrin localizes in Bunina bodies in amyotrophic lateral sclerosis. Acta Neuropathol 112:597–603

    Article  PubMed  CAS  Google Scholar 

  • Moalem S, Percy ME, Andrews DF, Kruck TP, Wong S, Dalton AJ, Mehta P, Fedor B, Warren AC (2000) Are hereditary hemochromatosis mutations involved in Alzheimer disease? Am J Med Genet 93:58–66

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado F, Hider RC, Gaeta A, Williams R, Francis P (2007) Metals ions and neurodegeneration. Biometals 20:639–654

    Article  PubMed  CAS  Google Scholar 

  • Morgan NV, Westaway SK, Morton JE, Gregory A, Gissen P, Sonek S, Cangul H, Coryell J, Canham N, Nardocci N, Zorzi G, Pasha S, Rodriguez D, Desguerre I, Mubaidin A, Bertini E, Trembath RC, Simonati A, Schanen C, Johnson CA, Levinson B, Woods CG, Wilmot B, Kramer P, Gitschier J, Maher ER, Hayflick SJ (2006) PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 38:752–754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller M, Leavitt BR (2014) Iron dysregulation in Huntington’s disease. J Neurochem 130:328–350

    Article  PubMed  CAS  Google Scholar 

  • Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC (2011) Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186:4973–4983

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Hamby A, Massa SM (2005) Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’ disease mouse model. Proc Natl Acad Sci USA 102:11840–11845

    Article  PubMed  CAS  Google Scholar 

  • Nguyen NB, Callaghan KD, Ghio AJ, Haile DJ, Yang F (2006) Hepcidin expression and iron transport in alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 291:L417–L425

    Article  PubMed  CAS  Google Scholar 

  • Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037–1044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Novartis Pharmaceutical Corporation (2010) Desferal® [Package Insert]. Novartis Pharmaceutical Corporation, East Hanover

    Google Scholar 

  • Núñez MT, Urrutia P, Mena N, Aguirre P, Tapia V, Salazar J (2012) Iron toxicity in neurodegeneration. Biometals 25:761–776

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Mizuno Y, Fujita Y (2008) Bunina bodies in amyotrophic lateral sclerosis. Neuropathology 28:109–115

    Article  PubMed  Google Scholar 

  • Olsen MK, Roberds SL, Ellerbrock BR, Fleck TJ, McKinley DK, Gurney ME (2001) Disease mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal cord. Ann Neurol 50:730–740

    Article  PubMed  CAS  Google Scholar 

  • Ortega R, Carmona A, Roudeau S, Perrin L, Ducic T, Carboni E, Bohic S, Cloetens P, Lingor P (2016) Alpha-synuclein overexpression induces increased iron accumulation and redistribution in iron-exposed neurons. Mol Neurobiol 53:1925–1934

    Article  PubMed  CAS  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  PubMed  CAS  Google Scholar 

  • Parisi OI, Puoci F, Iemma F, Curcio M, Cirillo G, Spizzirri UG, Picci N (2013) Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone). Pharm Dev Technol 18:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Parkkila S, Niemela O, Savolainen ER, Koistinen P (2001) HFE mutations do not account for transfusional iron overload in patients with acute myeloid leukemia. Transfusion 41:828–831

    Article  PubMed  CAS  Google Scholar 

  • Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Pollak Y, Mechlovich D, Amit T, Bar-Am O, Manov I, Mandel SA, Weinreb O, Meyron-Holtz EG, Iancu TC, Youdim MBH (2013) Effects of novel neuroprotective and neurorestorative multifunctional drugs on iron chelation and glucose metabolism. J Neural Transm 120:37–48

    Article  PubMed  CAS  Google Scholar 

  • Porter JB (2001) Practical management of iron overload. Br J Haematol 115:239–252

    Article  PubMed  CAS  Google Scholar 

  • Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen M, Folsom AR, Catellier DJ, Tsai MY, Garg U, Eckfeldt JH (2001) A prospective study of coronary heart disease and the hemochromatosis gene (HFE) C282Y mutation: the atherosclerosis risk in communities (ARIC) study. Atherosclerosis 154:739–746

    Article  PubMed  CAS  Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814

    Article  PubMed  CAS  Google Scholar 

  • Reznichenko L, Amit T, Zheng H, Avramovich-Tirosh Y, Youdim MB, Weinreb O, Mandel S (2006) Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (−)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer’s disease. J Neurochem 97:527–536

    Article  PubMed  CAS  Google Scholar 

  • Ricciarelli R, Zingg JM, Azzi A (2001) Vitamin E: protective role of a Janus molecule. FASEB J 15:2314–2325

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    Article  PubMed  CAS  Google Scholar 

  • Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T, Gullans SR (2002) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277:45518–45528

    Article  PubMed  CAS  Google Scholar 

  • Roob JM, Khoschsorur G, Tiran A, Horina JH, Holzer H, Winklhofer-Roob BM (2000) Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. J Am Soc Nephrol 11:539–549

    PubMed  CAS  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17

    Article  PubMed  CAS  Google Scholar 

  • Rott R, Szargel R, Shani V, Bisharat S, Engelender S (2014) α-Synuclein ubiquitination and novel therapeutic targets for Parkinson’s disease. CNS Neurol Disord 13:630–637

    Article  CAS  Google Scholar 

  • Roze E, Saudou F, Caboche J (2008) Pathophysiology of Huntington’s disease: from huntingtin functions to potential treatments. Curr Opin Neurol 21:497–503

    Article  PubMed  CAS  Google Scholar 

  • Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, Kasai-Yoshida E, Sawaura N, Nishida H, Hoshino A, Ryujin F, Yoshioka S, Nishiyama K, Kondo Y, Tsurusaki Y, Nakashima M, Miyake N, Arakawa H, Kato M, Mizushima N, Matsumoto N (2013) De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 45:445–449

    Article  PubMed  CAS  Google Scholar 

  • Salkovic-Petrisic M, Knezovic A, Osmanovic-Barilar J, Smailovic U, Trkulja V, Riederer P, Amit T, Mandel S, Youdim MB (2015) Multi-target iron-chelators improve memory loss in a rat model of sporadic Alzheimer’s disease. Life Sci 136:108–119

    Article  PubMed  CAS  Google Scholar 

  • Sawda C, Moussa C, Turner RS (2017) Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci 1403:142–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sebastiani G, Pantopoulos K (2011) Disorders associated with systemic or local iron overload: from pathophysiology to clinical practice. Metallomics 3:971–986

    Article  PubMed  CAS  Google Scholar 

  • Shirai M, Moon JH, Tsushida T, Terao J (2001) Inhibitory effect of a quercetin metabolite, quercetin 3-O-beta-d-glucuronide, on lipid peroxidation in liposomal membranes. J Agric Food Chem 49:5602–5608

    Article  PubMed  CAS  Google Scholar 

  • Siciliano G, Piazza S, Carlesi C, Del Corona A, Franzini M, Pompella A, Malvaldi G, Mancuso M, Paolicchi A, Murri L (2007) Antioxidant capacity and protein oxidation in cerebrospinal fluid of amyotrophic lateral sclerosis. J Neurol 254:575–580

    Article  PubMed  CAS  Google Scholar 

  • Simmons DA, Casale M, Alcon B, Pham N, Narayan N, Lynch G (2007) Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. GLIA 55:1074–1084

    Article  PubMed  Google Scholar 

  • Sinicropi MS, Amantea D, Caruso A, Saturnino C (2010a) Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning. Arch Toxicol 84:501–520

    Article  PubMed  CAS  Google Scholar 

  • Sinicropi MS, Caruso A, Capasso A, Palladino C, Panno A, Saturnino C (2010b) Heavy metals: toxicity and carcinogenicity. Pharmacologyonline 2:329–333

    Google Scholar 

  • Sinicropi MS, Rovito N, Carocci A, Genchi G (2011) Acetyl-l-carnitine in Parkinson’s disease. In: Dushanova J (ed) Mechanisms in Parkinson’s Disease—models and treatments. Intech, ISBN 978-953-307-876, pp 367–392

  • St John AT, Stuart KA, Crawford DHG (2011) Testing for HFE-related haemochromatosis. Aust Prescr 34:61–73

    Article  Google Scholar 

  • Takaesu A, Watanabe K, Takai S, Sasaki Y, Orino K (2008) Sequence analysis of dolphin ferritin H and L subunits and possible iron-dependent translational control of dolphin ferritin gene. Acta Vet Scand 50:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55:155–164

    Article  PubMed  CAS  Google Scholar 

  • Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62:1984–1989

    Article  PubMed  CAS  Google Scholar 

  • Upadhaya AR, Kosterin I, Kumar S, von Arnim CA, Yamaguchi H, Fändrich M, Walter J, Thal DR (2014) Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer’s disease. Brain 137:887–903

    Article  Google Scholar 

  • Urrutia PJ, Mena NP, Núñez MT (2014) The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 5:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    Article  PubMed  CAS  Google Scholar 

  • Wang XS, Lee S, Simmons Z, Boyer P, Scott K, Liu W, Connor J (2004) Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences. J Neurol Sci 227:27–33

    Article  PubMed  CAS  Google Scholar 

  • Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinreb O, Amit T, Mandel S, Youdim MB (2012) Novel therapeutic approach for neurodegenerative pathologies: multitarget iron-chelating drugs regulating hypoxia-inducible factor 1 signal transduction pathway. Neurodegener Dis 10:112–115

    Article  PubMed  CAS  Google Scholar 

  • Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802:29–44

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Brosh RM Jr (2012) DNA helicase and helicase–nuclease enzymes with a conserved iron–sulfur cluster. Nucleic Acids Res 40:4247–4260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB (2010) Why do we need multifunctional neuroprotective and neurorestorative drugs for Parkinson’s and Alzheimer’s disorders? Rambam Maimonides Med J 1(2):e0011

    Article  PubMed  PubMed Central  Google Scholar 

  • Youdim MB, Stephenson G, Ben Shachar D (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann NY Acad Sci 1012:306–325

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Berg D, Arzberger T, Ruprecht P, Rausch WD, Musicco M, Tampellini D, Riederer P, Gerlach M, Becker G (2005) In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord 20:1278–1285

    Article  PubMed  Google Scholar 

  • Zheng H, Fridkin M, Youdim MB (2010) Selective acetylcholinesterase inhibitor activated by acetylcholinesterase releases an active chelator with neurorescuing and anti-amyloid activities. ACS Chem Neurosc 1:737–746

    Article  CAS  Google Scholar 

  • Zheng H, Amit T, Bar-Am O, Fridkin M, Youdim MB, Mandel SA (2012) From anti-Parkinson’s drug rasagiline to novel multitarget iron chelators with acetylcholinesterase and monoamine oxidase inhibitory and neuroprotective properties for Alzheimer’s disease. J Alzheimers Dis 30:1–16

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28:345–349

    Article  PubMed  CAS  Google Scholar 

  • Zoccarato F, Toscano P, Alexandre A (2005) Dopamine-derived dopaminochrome promotes H2O2 release at mitochondrial complex I. Stimulation by rotenone, control by Ca2+, and relevance to Parkinson disease. J Biol Chem 280:15587–15594

    Article  PubMed  CAS  Google Scholar 

  • Zorzi G, Zibordi F, Chiapparini L, Bertini E, Russo L, Piga A, Longo F, Garavaglia B, Aquino D, Savoiardo M, Solari A, Nardocci N (2011) Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: results of a phase II pilot trial. Mov Disord 26:1756–1759

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Stefania Sinicropi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carocci, A., Catalano, A., Sinicropi, M.S. et al. Oxidative stress and neurodegeneration: the involvement of iron. Biometals 31, 715–735 (2018). https://doi.org/10.1007/s10534-018-0126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-018-0126-2

Keywords

Navigation