Skip to main content

Advertisement

Log in

Metals ions and neurodegeneration

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders include a variety of pathological conditions, which share similar critical metabolic processes such as protein aggregation and oxidative stress, both of which are associated with the involvement of metal ions. In this review Alzheimer’s disease and Parkinson’s disease are mainly discussed, with the aim of identifying common trends underlying these neurological conditions. Chelation therapy could be a valuable therapeutic approach, since metals are considered to be a pharmacological target for the rationale design of new therapeutic agents directed towards the treatment of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ :

β-Amyloid

APP:

Amyloid precursor protein

BBB:

Blood brain barrier

CNS:

Central nervous system

CQ:

Clioquinol

DFO:

Desferrioxamine

EDTA:

Ethylenediaminetetraacetic acid

IL:

Interleukine

IRE:

Iron-responsive element

PD:

Parkinson’s disease

PrP:

Prion protein

PrPC :

Normal isoform of the prion protein

PrPSc :

Scrapie isoform of the prion protein

ROS:

Reactive oxygen species

SN:

Substantia nigra

SNc:

Substantia nigra pars compacta

SOD:

Superoxide dismutase

TNF:

Tumour necrosis factor

References

  • Abeysinghe RD, Roberts PJ, Cooper, CE, Maclean KH, Hider RC, Porter JB (1996) The environment of the lipoxygenase iron binding site explored with novel hydroxypyridinone iron chelators. J Biol Chem 271:7965–7972

    Article  PubMed  CAS  Google Scholar 

  • Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B (1997) A generalised increase in protein carbonyls in the brain of Parkinson’s but not incidental Lewy body disease. J Neurochem 69:1326–1329

    Article  PubMed  CAS  Google Scholar 

  • Allan SM, Rothwell NJ (2003) Inflammation in central nervous system injury. Phil Trans R Soc Lond B Biol Sci 358:1669–1677

    Article  CAS  Google Scholar 

  • Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640

    Article  PubMed  CAS  Google Scholar 

  • Antzutkin ON, Leapman RD, Balbach JJ, Tycko R (2002) Sopramolecular structural constraints on Alzheimer’s β-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. Biochemistry 41:15436–15450

    Article  PubMed  CAS  Google Scholar 

  • Atwood CS, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN (2003) Amyloid-β: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-β. Brain Res Rev 43:1–16

    Article  PubMed  CAS  Google Scholar 

  • Beard JL, Wiesinger JA, Connor JR (2003) Pre- and postweaning iron deficiency alters myelination in Sprague–Dawley rats. Dev Neurosci 25:308–315

    Article  PubMed  CAS  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteosome system by protein aggregation. Science 292:1552–1555

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shacar D, Kahana N, Kampel V, Warshawsky A, Youdim MBH (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lesion in rats. Neuropharmacology 46:254–263

    Article  CAS  Google Scholar 

  • Bonilla E (2000) Huntington disease. A review. J Clin Invest 41:117–141

    CAS  Google Scholar 

  • Brion S, Mirol J, Psimaras A (1973) Recent findings in Pick’s disease. In: Zimmerman HM (eds) Progress in neuropathology, vol 2. Grune and Stratton, New York, pp 421–452

    Google Scholar 

  • Brown DR (2001) Copper and prion disease. Br Res Bull 55:165–173

    Article  CAS  Google Scholar 

  • Brunk UT, Jones CB, Sohal RS (1992) A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mut Res 275:395–403

    CAS  Google Scholar 

  • Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Rad Biol Med 33:611–619

    Article  PubMed  CAS  Google Scholar 

  • Bucciantini M, Giannoni F, Chiti F et al (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:501–511

    Article  Google Scholar 

  • Bush AI, Huang X, Fairlie DP (1999) The possible origin of free radicals from amyloid β-peptides in Alzheimer’s disease. Neurobiol Ageing 20:335–337

    Article  Google Scholar 

  • Bush AI (2002) Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol Ageing 23:1031–1038

    Article  CAS  Google Scholar 

  • Butterfield DA, Kanski J (2001). Brain oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122:945–962

    Article  PubMed  CAS  Google Scholar 

  • Cherny RA, Barnham KJ, Lynch T et al (2000). Chelation and intercalation: complementary properties in a compound for the treatment of Alzheimer’s disease. J Struct Biol 130:209–216

    Article  PubMed  CAS  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME et al (2001) Treatment with a copper–zinc chelator markedly and rapidly inhibits b-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    Article  PubMed  CAS  Google Scholar 

  • Chetley A, Gilbert D (1986) Health action international. International Organisation of Consumers Unions, The Hangue

    Google Scholar 

  • Claesen ME, Clements ML (1989) Ridding the world of hydroxyquinolines. Br Med J 299:527–528

    Article  Google Scholar 

  • Cohen AS, Shirahama T, Skinner M (1982) Electron microscopy of amyloid. In: Harris JR (eds) Electron microscopy of proteins, vol 3. Academic Press, London UK, pp 165–205

    Google Scholar 

  • Cohen FE (1999) Protein misfolding and prion diseases. J Mol Biol 293:313–320

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Snyder BS, Arosio P, Loeffler DA, Lewitt P (1995) A quantitative analysis of isoferritins in select regions of aged, parkinsonian and Alzheimer’s diseased brains. J Neurochem 65:717–724

    Article  PubMed  CAS  Google Scholar 

  • Cooper CE, Lynagh GR, Hoyes KP, Hider RC, Cammack R, Porter JB (1996) The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase. J Biol Chem 271:20291–20299

    Article  PubMed  CAS  Google Scholar 

  • Crapper Mclachlan DR, Dalton AJ, Kruck TPA et al (1991) Effect of desferrioxamine on the clinical progress of Alzheimer’s disease. Lancet 337:1304–1308

    Article  PubMed  CAS  Google Scholar 

  • Crossthwaite AJ, Williams RJ (2002) Hydrogen peroxide-mediated phosphorilation of ERK1/2, Akt/PKB and JNK in cortical neurons: dependence on Ca2+ and PI 3-kinase. J Neurochem 80:24–36

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Wells FR, Lees AJ (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:381–389

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16:285–298

    Article  PubMed  CAS  Google Scholar 

  • Di Patti MC, Persichini T, Mazzone V, Polticelli F, Colasanti M, Musci G (2004) Interleukin-1 beta up-regulates iron efflux in rat C6 glioma cells through modulation of ceruloplasmin and ferroportin-1 synthesis. Neurosci Lett 363:182–186

    Article  PubMed  CAS  Google Scholar 

  • Dobson MC (2003a) Protein folding and disease: a view from the first horizon symposium. Nat Drug Disc 2:154–160

    Article  CAS  Google Scholar 

  • Dobson MC (2003b) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  Google Scholar 

  • Duffy PE, Tennyson VM (1965) Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and Locus caeruleus in Parkinson’s disease. J Neuropathol Exp Neurol 24:398–414

    Article  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA, Hensley K (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23:795–807

    Article  PubMed  CAS  Google Scholar 

  • Gaeta A, Hider RC (2005) The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol 146:1041–159

    Article  PubMed  CAS  Google Scholar 

  • Gotz ME, Künig G, Riederer P, Youdim MBH (1994) Oxidative stress: Free radical production in neural degeneration. Pharmacol Ther 63:37–122

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E, Mandel S, Youdim MB (2000) MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson’s disease: neuroprotective strategies. J Neurol 247(Suppl 2):95–102

    Google Scholar 

  • Habgood MD, Liu ZD, Dehkordi LS, Khodr HH, Abbott J, Hider RC (1999) Investigation into the correlation between the structure of hydroxypyridinones and blood–brain barrier permeability. Biochem Pharmacol 57:1305–1310

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species the central nervous system. J Neurochem 59:1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  • Harris DC, Aisen P (1973) Facilitation of Fe(II) autoxidation by Fe(III) complexing agents. Biochim Biophys Acta 329:156–158

    PubMed  CAS  Google Scholar 

  • Hartley DM, Walsh DM, Ye CP et al (1999) Protofibrillar intermediates of amyloid b-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurones. J Neurosci 19(20):8876–8884

    PubMed  CAS  Google Scholar 

  • Hedge ML, Jagannatha Rao KS (2003) Challenges and complexities of α-synuclein toxicity: new postulates in unfolding the mystery associated with Parkinson’s disease. Arch Biochem Biophys 418:169–178

    Article  CAS  Google Scholar 

  • Hider RC, Hall AD (1991) Clinically useful chelators of tripositive elements. Prog Med Chem 28:41–173

    Article  PubMed  CAS  Google Scholar 

  • Hider RC (1995) Potential protection from toxicity by oral iron chelators. Toxicol Lett 82–83:961–967

    Article  PubMed  Google Scholar 

  • Hijazi N, Shaked Y, Rosenmann H, Ben-Hur T, Gabizon R (2003) Copper binding to PrPC may inhibit prion disease propagation. Br Res 993:192–200

    Article  CAS  Google Scholar 

  • Hirsh EC, Brandel J-P, Galle P (1991) Iron and aluminium increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56:446–451

    Article  Google Scholar 

  • Holander D, Ricketts D, Boyd CAR (1988) Importance of probe molecular geometry in determining intestinal permeability. Can J Gastroenterol 2:35A–38A

    Google Scholar 

  • Hsiao K, Chapman P, Nilsen S et al (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Atwood CS, Hartshorn MA et al (1999) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey M, Goodsir CM, Bruce ME, Mcbride PA, Scott JR (1994) Infection-specific prion protein (PrP) accumulates on neuronal plasmalemma in scrapie-infected mice. Ann NY Acad Sci 724:327–330

    Article  PubMed  CAS  Google Scholar 

  • Jelliger KA (1999) The role of iron in neurodegeneration: prospects for pharmacology of Parkinson’s disease. Drugs Aging 14:115–140

    Article  Google Scholar 

  • Kaur D, Yantiri F, Rajagopalan S et al (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37:899–909

    Article  PubMed  CAS  Google Scholar 

  • Kamenetz F, Tomita T, Hsieh H et al (2003) APP processing and synaptic function. Neuron 37:925–937

    Article  PubMed  CAS  Google Scholar 

  • Klein WL, Krafft GA, Finch CE (2001) Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224

    Article  PubMed  CAS  Google Scholar 

  • Laine J, Marc M-E, Sy M-S, Axelrad H (2001) Cellular and subcellular morphological localization of normal prion protein in rodent cerebellum. Eur J Neurosci 14:47–56

    Article  PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Aβ 1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  PubMed  CAS  Google Scholar 

  • Lan J, Jiang DH (1997) Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neural Transm 104:469–481

    Article  PubMed  CAS  Google Scholar 

  • Lee J-Y, Friedman JE, Angel I, Kozak A, Kohj JY (2004) The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human β-amyloid precursor protein transgenic mice. Neurobiol aging 25:1315–1321

    Article  PubMed  CAS  Google Scholar 

  • Levine SM, Chakrabarty A (2004) The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann NY Acad Sci 1012:252–266

    Article  PubMed  CAS  Google Scholar 

  • Liu ZD, Lockwood M, Rose S, Theobald AE, Hider RC (2001) Structure-activity investigation of the inhibition of 3-hydroxypyridin-4-ones on mammalian tyrosine hydroxylase. Biochem Pharmacol 61:285–290

    Article  PubMed  CAS  Google Scholar 

  • Liu ZD, Hider RC (2002a) Design of clinically useful iron(III)-selective chelators. Med Res Rev 22:26–64

    Article  CAS  Google Scholar 

  • Liu ZD, Hider RC (2002b). Design of iron chelators with therapeutic application. Coord Chem Rev 232:151–171

    Article  CAS  Google Scholar 

  • Liu ZD, Kayyali R, Hider RC, Porter JB, Theobald AE (2002) Design, synthesis, and evaluation of novel 2-substitued 3-hydroxypyridin-4-ones: structure-activity investigation of metalloenzyme inhibition by iron chelators. J Med Chem 45:631–639

    Google Scholar 

  • Lovell MA, Robertson JD, Teesdal WJ, Campbell JL, Markesbery WR (1998). Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  PubMed  CAS  Google Scholar 

  • Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T (2006) Long-lasting neural and behavioural effects of iron deficiency in infancy. Nutr Rev 64:S34–43

    Article  PubMed  Google Scholar 

  • Lue LF, Kuo Y-M, Roher AE et al (1999) Soluble amyloid β-peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    PubMed  CAS  Google Scholar 

  • Maguire-Zeiss KA, Short DW, Federoff HJ (2005) Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson’s disease? Brain Res Mol Brain 134(1):18–23

    Article  CAS  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MB (2005) Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Brain Res Rev 48:379–387

    Article  PubMed  CAS  Google Scholar 

  • Martell AE, Smith RM (1974–1989) Critical stability constant, vol 1–6. Plenum Press, London

    Google Scholar 

  • Maxton DG, Bjarnason I, Reynolds AP, Catt SD, Peters TJ, Menzies IS (1986). Lactulose, 51Cr-labelled ethylenediaminetetra-acetate, L-rhamnose and polyethyleneglycol 400 [corrected] as probe markers for assessment in vivo of human intestinal permeability. Clin Sci 71:71–80

    PubMed  CAS  Google Scholar 

  • Mc Lean CA, Cherny RA, Fraser FW et al (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  CAS  Google Scholar 

  • Merz PA, Sommerville RA, Wisniewsky HM, Ikbal K (1981). Abnormal fibrils from scrapie-infected brain. Acta Neuropathol 54:63–74 (Berlin)

    Article  PubMed  CAS  Google Scholar 

  • Miranda S, Opazo C, Larrondo LF et al (2000) The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer’s disease. Prog. Neurobiol. 62:633–648

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M et al (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado F, Williams RJ, Gaeta A et al (2006) Neuroprotective actions of an iron chelator against Alzheimer’s disease-relevant insults. Poster session, 10th international conference on Alzheimer’s disease and related disorders’s, Madrid, Spain

  • Oakley GP (1973) The neurotoxicity of the halogenated hydroxyquinolines. JAMA 225(4):395–397

    Article  PubMed  Google Scholar 

  • O’Brien-Ladner AR, Nelson SR, Murphy WJ, Blumer BM, Wesselius LJ (2000) Iron is a regulatory component of human IL-1beta production. Support for regional variability in the lung. Am J Respir Cell Mol Biol 23:112–119

    PubMed  Google Scholar 

  • Olanow CW (1992) Magnetic resonance imaging in parkinsonism. Neurol Clin North Am 405–420

  • Olanow CW, Youdim MB (1996) Neurodegeneration and neuroprotection in Parkinson’s disease. Academic Press, pp 55–59

  • Oldendorf WH (1974) Lipid solubility and drug penetration of the blood–brain barrier. Proc Soc Exp Biol Med 147:813–816

    PubMed  CAS  Google Scholar 

  • Olivieri N, Koren G, Hermann C et al (1990) Comparison of oral iron chelator L1 and desferrioxamine in iron-loaded patients. Lancet 336:1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Paik SR, Shin H-J, Lee J-H, Chang C-S, Kim J (1999) Copper(II)-induced self-oligomerisation of α-synuclein. Biochem J 340:821–828

    Article  PubMed  CAS  Google Scholar 

  • Palm A (1932) Untersuchung in des chinolin reihe. Arch Exp Pathol Pharmacol 199:176–185

    Article  Google Scholar 

  • Pan K, Baldwin M, Nguyen J et al (1993) Conversion of α-helices β-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB, Mckinley MP, Bowman KA et al (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1991) Molecular biology of prion disease. Science 252:1515–1522

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (2001) Neurodegenerative diseases and prions. N Engl J Med 344:1516–1526

    Article  PubMed  CAS  Google Scholar 

  • Raymond KN, Müller G, Matzanke BF (1984) Complexation of iron by siderophores: a review of their solution and structural chemistry and biological function. Top Curr Chem 58:49–102

    Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J Neurochem 52:515–520

    Article  PubMed  CAS  Google Scholar 

  • Rochet JC, Lansbury PT (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–80

    Article  PubMed  CAS  Google Scholar 

  • Roher AE, Chaney MO, Kuo Y-M et al (1996) Morphology and toxicity of Aβ-(1–12) dimmer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 271:20631–20635

    Article  PubMed  CAS  Google Scholar 

  • Rogers JT, Lahiri DK (2004) Metal and inflammatory targets for Alzheimer’s disease. Curr Drug Targets 5:535–551

    Article  PubMed  CAS  Google Scholar 

  • Rogers JT, Leiter LM, Mcphee J et al (1999) Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by Interleukin-1 through 5’-untranslated region sequences. J Biol Chem 274:6421–6431

    Google Scholar 

  • Rogers JT, Randall JD, Cahill CM et al (2002) An iron-responsive element type II in the 5’-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277:45518–45528

    Article  PubMed  CAS  Google Scholar 

  • Rose FC, Gawel M (1984) Clioquinol neurotoxicity: an overview. Acta Neurol Scand 80(Suppl 100):137–145

    Google Scholar 

  • Saggu H, Cooksey J, Dexter D (1989) A selective increase in a particular superoxide dismutase activity in Parkinsonian substantia nigra. J Neurochem 53:692–697

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos J, Overvick E, Ames BN (1994) A marker of oxyradical-mediated DNA damage (8-hydroxy-2’-deoxy-guanoxine) is increased in nigro-striatum of Parkinson’s disease brain. Neurodegeneration 3:197–204

    Google Scholar 

  • Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross β-conformation. Proc Natl Acad Sci USA 97:4897–4902

    Article  PubMed  CAS  Google Scholar 

  • Shastry BS (2003) Neurodegenerative disorders of protein aggregation. Neurochem Int 43:1–7

    Article  PubMed  CAS  Google Scholar 

  • Sherki YG, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975

    Article  Google Scholar 

  • Shin R-W, Kruck TPA, Murayama H, Kitamoto T (2003) A novel trivalent cation chelator Feralex dissociates binding of aluminum and iron associated with hyperphosphorylated τ of Alzheimer’s disease. Br Res 961:139–146

    Article  CAS  Google Scholar 

  • Sikorski P, Atkins EDT, Serpell LC (2003) Structure and texture of fibrous crystals formed by Alzheimer’s Aβ (11–15) peptide fragment. Structure 11:915–926

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H (1988) Increased Iron(Iii) and total iron content in post mortem, substantia nigra of parkinsonian brain. J Neural Trans 74:199–205

    Article  CAS  Google Scholar 

  • Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130

    Article  PubMed  CAS  Google Scholar 

  • Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229–240

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  PubMed  CAS  Google Scholar 

  • Torok M, Milton S, Kayed R et al (2002) Structural and dynamic features of Alzheimer’s Aβ peptide in amyloid fibrils studied by site-directed spin labelling. J Biol Chem 277:40810–40815

    Article  PubMed  CAS  Google Scholar 

  • Tsubaki T, Honma Y, Hosh M (1971) Neurological syndrome associated with clioquinol. Lancet 1:696–697

    Article  PubMed  CAS  Google Scholar 

  • Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14:1–8

    Article  CAS  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation and fibrillation of human α-synuclein. J Biol Chem 276:10737–10744

    Article  PubMed  CAS  Google Scholar 

  • Vigo-Pelfrey C, Lee D, Keim P, Lieberburg I, Schenk DB (1993) Characterisation of amyloid peptide from human cerebrospinal fluid. J Neurochem 61:1965–1968

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Hartley DM, Kusumoto Y et al (1999) Amyloid β protein fibrillogenesis: structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  PubMed  CAS  Google Scholar 

  • Wang SS, Becerra-Arteaga A, Good TA (2002) Development of a novel diffusion-based method to estimate the size of the aggregated Aβ species responsible for neurotoxicity. Biotechnol Bioeng 80:50–59

    Article  PubMed  CAS  Google Scholar 

  • Warshawsky B., Youdim MBH, Ben-Shacar D (2000) Pharmaceutical compositions compromising iron chelators for the treatment of neurodegenerative disorders and some novel iron chelators. International Publication number WO 00/74664A2

  • Wisniewsky HM, Coblentz JM, Terry RD (1972) Pick’s disease. A clinical and ultrastructural study. Arch Neurol 26:97–108

    Google Scholar 

  • Xu J, Kao S-Y, Lee FJS, Song W, Jin L-W, Yankner BA (2002) Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606

    Article  PubMed  CAS  Google Scholar 

  • Ye FQ, Allen PS, Martin WRW (1996) Basal ganglia iron content in Parkinson’s disease measured with magnetic resonance. Mov Disord 11:243–249

    Article  PubMed  CAS  Google Scholar 

  • Yokel RA, Fredenburg AM, Meurer KA, Skinner TL (1995) Influence of lipophilicity on the bioavailability and disposition of orally active 3-hydroxypyridin-4-one metal chelators. Drug Metab Dispos 23:1178–1180

    PubMed  CAS  Google Scholar 

  • Youdim MB, Grunblatt E, Mandel S (1999) The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson’s disease with iron chelators. Ann NY Acad Sci 890:7–25

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510:216–220

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Haaf M, Todorich B et al (2005) Cytokine toxicity to oligodendrocyte precursors is mediated by iron. Glia 52(3):199–208

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Hider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina-Holgado, F., Hider, R.C., Gaeta, A. et al. Metals ions and neurodegeneration. Biometals 20, 639–654 (2007). https://doi.org/10.1007/s10534-006-9033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9033-z

Keywords

Navigation