Skip to main content
Log in

After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Electrical responses of olfactory sensory neurons to odorants were examined in the presence of zinc nanoparticles of various sizes and degrees of oxidation. The zinc nanoparticles were prepared by the underwater electrical discharge method and analyzed by atomic force microscopy and X-ray photoelectron spectroscopy. Small (1.2 ± 0.3 nm) zinc nanoparticles significantly enhanced electrical responses of olfactory neurons to odorants. After oxidation, however, these small zinc nanoparticles were no longer capable of enhancing olfactory responses. Larger zinc oxide nanoparticles (15 nm and 70 nm) also did not modulate responses to odorants. Neither zinc nor zinc oxide nanoparticles produced olfactory responses when added without odorants. The enhancement of odorant responses by small zinc nanoparticles was explained by the creation of olfactory receptor dimers initiated by small zinc nanoparticles. The results of this work will clarify the mechanisms for the initial events in olfaction, as well as to provide new ways to alleviate anosmia related to the loss of olfactory receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiken JD, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal A 145:1–44

    Article  CAS  Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters nanocrystals, and quantum dots. Science 271:933–937. doi:10.1126/science.271.5251.933

    Article  CAS  Google Scholar 

  • Amoore JE (1963) Stereochemical theory of olfaction. Nature 198:271–272

    Article  CAS  PubMed  Google Scholar 

  • Barreiro A, van der Zant HSJ, Vandersypen LMK (2012) Quantum dots at room temperature carved out from few-layer graphene. Nano Lett 12:6096–6100. doi:10.1021/nl3036977

    Article  CAS  PubMed  Google Scholar 

  • Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96:159–165. doi:10.1016/j.aquatox.2009.10.019

    Article  CAS  PubMed  Google Scholar 

  • Bilberg K, Døving KB, Beedholm K, Baatrup E (2011) Silver nanoparticles disrupt olfaction in Crucian carp (Carassius carassius) and Eurasian perch (Perca fluviatilis). Aquat Toxicol 104:145–152. doi:10.1016/j.aquatox.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  • Black D, Ritter JJ, Bonevich JE, Henins A, Cline JP (2012) Nanocrystalline zinc oxide powder for x-ray diffraction metrology. Adv X Ray Anal 56:61–70

    Google Scholar 

  • Block E, Jang S, Matsunami H, Sekharan S, Dethier B, Ertem MZ, Gundala S, Pan Y, Li S, Li Z, Lodge SN, Ozbil M, Jiang H, Penalba SF, Batista VS, Zhuang H (2015) Implausibility of the vibrational theory of olfaction. Proc Natl Acad Sci USA 112:E2766–2774. doi:10.1073/pnas.1503054112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boekhoff I, Breer H (1992) Termination of second messenger signaling in olfaction. Proc Natl Acad Sci USA 89:471–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisy F, Ronnett G, Cunningham A, Juilfs D, Beavo J, Snyder S (1992) Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J Neurosci 12:915–923

    CAS  PubMed  Google Scholar 

  • Bozym RA, Thompson RB, Stoddard AK, Fierke CA (2006) Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1:103–111

    Article  CAS  PubMed  Google Scholar 

  • Breer H (2003a) Olfactory receptors: molecular basis for recognition and discrimination of odors. Anal Bioanal Chem 377:427–433

    Article  CAS  PubMed  Google Scholar 

  • Breer H (2003b) Sense of smell: recognition and transduction of olfactory signals. Biochem Soc Trans 31:113–116

    Article  CAS  PubMed  Google Scholar 

  • Brookes JC, Horsfield AP, Stoneham AM (2012) The swipe card model of odorant recognition. Sensors 12:15709–15749. doi:10.3390/s121115709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A 202:175–186. doi:10.1016/S0927-7757(01)01087-1

    Article  CAS  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors—a molecular-basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  • Burd GD (1993) Morphological-study of the effects of intranasal zinc-sulfate irrigation on the mouse olfactory epithelium and olfactory-bulb. Microsc Res Tech 24:195–213. doi:10.1002/jemt.1070240302

    Article  CAS  PubMed  Google Scholar 

  • Bush CF (2008) Olfactory receptor dimerization. Ph D dissertation, Emory University. https://etd.library.emory.edu/view/record/pid/emory:15jh3

  • Castiglioni AJ, Remis NN, Flores EN, Garcia-Anoveros J (2011) Expression and vesicular localization of mouse Trpml3 in Stria vascularis, hair cells, and vomeronasal and olfactory receptor neurons. J Comp Neurol 519:1095–1114. doi:10.1002/cne.22554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YJ, Chi B, Zhang HZ, Chen H, Chen Y (2007) Controlled growth of zinc nanowires. Mater Lett 61:144–147. doi:10.1016/j.matlet.2006.04.044

    Article  CAS  Google Scholar 

  • Cline JP, Leoni M, Black D, Henins A, Bonevich JE, Whitfield PS, Scardi P (2013) Crystalline domain size and faulting in the new NIST SRM 1979 zinc oxide. Powder Diffr 28:S22–S32. doi:10.1017/S0885715613001188

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  CAS  PubMed  Google Scholar 

  • Daniels YC, MacCrehan WA, Vodyanoy V (2015) Characterization of olfactory-enhancing zinc metal nanoparticles. Paper presented at the IEEE international conference on nanotechnology, Rome, July 27–30

  • Donaldson J, St. Pierre T, Minnich JL, Barbeau A (1973) Determination of Na+, K+, Mg2+, Cu2+, Zn2+, and Mn2+ in rat brain regions. Can J Biochem 51:87–92

    Article  CAS  PubMed  Google Scholar 

  • Dyson GM (1938) The scientific basis of odour. Chem Ind 57:647–651

    Article  Google Scholar 

  • Farmen E, Mikkelsen HN, Evensen O, Einset J, Heier LS, Rosseland BO, Salbu B, Tollefsen KE, Oughton DH (2012) Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low mug/L concentrations of Ag nanoparticles. Aquat Toxicol 108:78–84. doi:10.1016/j.aquatox.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  • Firestein S, Darrow B, Shepherd GM (1991) Activation of the sensory current in salamander olfactory receptor neurons depends on a G protein-mediated cAMP second messenger system. Neuron 6:825–835

    Article  CAS  PubMed  Google Scholar 

  • Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003a) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  CAS  PubMed  Google Scholar 

  • Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003b) Is rhodopsin dimeric in native retinal rods? Reply. Nature 426:31

    Article  CAS  Google Scholar 

  • Franco MI, Turin L, Mershin A, Skoulakis EMC (2011) Molecular vibration-sensing component in Drosophila melanogaster olfaction. Proc Natl Acad Sci USA 108:3797–3802. doi:10.1073/pnas.1012293108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Mueller RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, de Valdenebro M, Prough DS, Zornow MH (2006) Concentrations of extracellular free zinc (pZn)(e) in the central nervous system of man, rat and rabbit during anesthesia, ischemia and reperfusion. Exp Neurol 202:523–523

    Article  Google Scholar 

  • Fugono J, Fujimoto K, Yasui H, Kawabe K, Yoshikawa Y, Kojima Y, Sakurai H (2002) Metallokinetic study of zinc in the blood of normal rats given insulinomimetic zinc(II) complexes and improvement of diabetes mellitus in type 2 diabetic GK rats by their oral administration. Drug Metab Pharmacokinet 17:340–347

    Article  CAS  PubMed  Google Scholar 

  • Fukutani Y, Ishii J, Noguchi K, Kondo A, Yohda M (2012) An improved bioluminescence-based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor. Biotechnol Bioeng 109:3143–3151. doi:10.1002/bit.24589

    Article  CAS  PubMed  Google Scholar 

  • Gane S, Georganakis D, Maniati K, Vamvakias M, Ragoussis N, Skoulakis EM, Turin L (2013) Molecular vibration-sensing component in human olfaction. PLoS One 8:e55780. doi:10.1371/journal.pone.0055780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao XL, Du ZY, Patel TB (2005) Copper and zinc inhibit G alpha(s) function. J Biol Chem 280:2579–2586

    Article  CAS  PubMed  Google Scholar 

  • Gu X-F, Furuharaa T, Zhang W-Z (2016) PTCLab: free and open-source software for calculating phase transformation crystallography. J Appl Crystallogr 49:1–8

    Article  Google Scholar 

  • Hall RA (2009) Olfactory receptor interactions with other receptors. Ann NY Acad Sci 1170:147–149

    Article  CAS  PubMed  Google Scholar 

  • Harel D, Carmel L, Lancet D (2003) Towards an odor communication system. Comp Biol Chem 27:121–133

    Article  CAS  Google Scholar 

  • Horning MS, Trombley PQ (2001) Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms. J Neurophysiol 86:1652–1660

    CAS  PubMed  Google Scholar 

  • Horning MS, Blakemore LJ, Trombley PQ (2000) Endogenous mechanisms of neuroprotection: role of zinc, copper, and carnosine. Brain Res 852:56–61. doi:10.1016/S0006-8993(99)02215-5

    Article  CAS  PubMed  Google Scholar 

  • Jena P, Khanna SN, Rao BK (1996) Stability and electronic structure of cluster assembled materials. In: Sattler K (ed) Cluster assembled materials. Trans Tech Publications, Zurich, pp 1–25

    Google Scholar 

  • Jia H, Pustovyy O, Waggoner P, Beyers R, Schumacher J, Barrett J, Morrison E, Gillette R, Denney T, Vodyanoy V, Deshpande G (2012) Functional MRI of the olfactory system in awake and anesthetized dogs. Paper presented at the 20th annual meeting of the International Society for Magnetic Resonance in Medicine, Melbourne

  • Jia H, Pustovyy OM, Waggoner P, Beyers RJ, Schumacher J, Wildey C, Barrett J, Morrison E, Salibi N, Denney TS, Vodyanoy VJ, Deshpande G (2014) Functional MRI of the olfactory system in conscious dogs. PLoS One 9:e86362. doi:10.1371/journal.pone.0086362

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia H, Pustovyy OM, Wang Y, Waggoner P, Beyers RJ, Schumacher J, Wildey C, Morrison E, Salibi N, Denney TS, Vodyanoy VJ, Deshpande G (2016) Enhancement of odor-induced activity in the canine brain by zinc nanoparticles: a functional MRI study in fully unrestrained conscious dogs. Chem Senses 41:53–67. doi:10.1093/chemse/bjv054

    Article  PubMed  Google Scholar 

  • Khanna SN, Rao BK, Jena P (2002) Magic numbers in metallo-inorganic clusters: chromium encapsulated in silicon cages. Phys Rev Lett 89:016803. doi:10.1103/PhysRevLett.89.016803

    Article  CAS  PubMed  Google Scholar 

  • Klein C, Heyduk T, Sunahara RK (2004) Zinc inhibition of adenylyl cyclase correlates with conformational changes in the enzyme. Cell Signal 16:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Kramer RH, Molokanova E (2001) Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction. J Exp Biol 204:2921–2931

    CAS  PubMed  Google Scholar 

  • Kruyt HR (1952) Colloid science, vol VI. Elsevier, New York

    Google Scholar 

  • Lancet D, Benarie N (1993) Olfactory receptors. Curr Biol 3:668–674

    Article  CAS  PubMed  Google Scholar 

  • Lancet D, Pace U (1987) The molecular-basis of odor recognition. Trends Biochem Sci 12:63–66

    Article  CAS  Google Scholar 

  • Li Y, Maret W (2009) Transient fluctuations of intracellular zinc ions in cell proliferation. Exp Cell Res 315:2463–2470

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Cheng Y, Pan Q, Tao X, Yang B, Ye G (2016) One-dimensional growth of zinc crystals on a liquid surface. Sci Rep 6:19870. doi:10.1038/srep19870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai NT, Thuy TT, Mott DM, Maenosono S (2013) Chemical synthesis of blue-emitting metallic zinc nano-hexagons. Cryst Eng Comm 15:6606–6610. doi:10.1039/C3CE40801A

    Article  CAS  Google Scholar 

  • Matijevic E, Goia D (2007) Formation mechanisms of uniform colloid particles. Croat Chem Acta 80:485–491

    CAS  Google Scholar 

  • Matulionis DH (1975) Ultrastructural study of mouse olfactory epithelium following destruction by ZnSO4 and its subsequent regeneration. Am J Anat 142:67–89. doi:10.1002/aja.1001420106

    Article  CAS  PubMed  Google Scholar 

  • Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci USA 101:4083–4088. doi:10.1073/pnas.0307332101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncrieff RW (1954) The characterization of odours. J Physiol 125:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore CH, Pustovyy O, Dennis JC, Moore T, Morrison EE, Vodyanoy VJ (2012) Olfactory responses to explosives associated odorants are enhanced by zinc nanoparticles. Talanta 88:730–733. doi:10.1016/j.talanta.2011.11.024

    Article  CAS  PubMed  Google Scholar 

  • Morkoç H, Özgur Ü (2009) Zinc oxide: fundamentals, materials and device technology. Wilay, Weinheim

    Book  Google Scholar 

  • Percival MD, Yeh B, Falgueyret J-P (1997) Zinc dependent activation of cAMP-specific phosphodiesterase (PDE4A). Biochem Biophys Res Commun 241:175–180

    Article  CAS  PubMed  Google Scholar 

  • Samoylov AM, Samoylova TI, Pustovyy OM, Samoylov AA, Toivio-Kinnucan MA, Morrison NE, Globa LP, Gale WF, Vodyanoy V (2005) Novel metal clusters isolated from blood are lethal to cancer cells. Cells Tissues Organs 179:115–124

    Article  CAS  PubMed  Google Scholar 

  • Sanz G, Pajot-Augy E (2013) Deciphering activation of olfactory receptors using heterologous expression in Saccharomyces cerevisiae and bioluminescence resonance energy transfer. Olfactory Recept Methods Protoc 1003:149–160

    Article  CAS  Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of g-proteins in signal transduction. Science 252:802–808

    Article  CAS  PubMed  Google Scholar 

  • Simonson T, Brooks CL (1996) Charge screening and the dielectric constant of proteins: insights from molecular dynamics. J Am Chem Soc 118:8452–8458. doi:10.1021/ja960884f

    Article  CAS  Google Scholar 

  • Sinnarajah S, Ezeh PI, Pathirana S, Moss AG, Morrison EE, Vodyanoy V (1998) Inhibition and enhancement of odorant-induced cAMP accumulation in rat olfactory cilia by antibodies directed against Gas/olf- and Gai-protein subunits. FEBS Lett 426:377–380

    Article  CAS  PubMed  Google Scholar 

  • Sinnarajah S, Dessauer CW, Srikumar D, Chen J, Yuen J, Yllma S, Dennis JC, Morrison EE, Vodyanoy V, Kehrl JH (2001) RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III. Nature 409:1051–1055

    Article  CAS  PubMed  Google Scholar 

  • Sklar PB, Anholt RRH, Snyder SH (1986) The odorant-sensitive adenylate-cyclase of olfactory receptor-cells—differential stimulation by distinct classes of odorants. J Biol Chem 261:5538–5543

    Google Scholar 

  • Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34:137–148

    Article  CAS  PubMed  Google Scholar 

  • Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351

    Article  CAS  PubMed  Google Scholar 

  • Takeda A, Ohnuma M, Sawashita J, Okada S (1997) Zinc transport in the rat olfactory system. Neurosci Lett 225:69–71

    Article  CAS  PubMed  Google Scholar 

  • Thomas JM (1988) Colloidal metals—past, present and future. Pure Appl Chem 60:1517–1528

    Article  CAS  Google Scholar 

  • Tokushige M, Nishikiori T, Ito Y (2010) Plasma-induced cathodic discharge electrolysis to form various metal/alloy nanoparticles. Russ J Electrochem 46:619–626. doi:10.1134/s1023193510060042

    Article  CAS  Google Scholar 

  • Turin L (1996) A spectroscopic mechanism for primary olfactory reception. Chem Senses 21:773–791

    Article  CAS  PubMed  Google Scholar 

  • Turin L, Gane S, Georganakis D, Maniati K, Skoulakis EMC (2015) Plausibility of the vibrational theory of olfaction. Proc Natl Acad Sci USA 112:E3154. doi:10.1073/pnas.1508035112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viswaprakash N, Dennis JC, Samoylov AM, Josephson EM, Morrison EE, Vodyanoy V (2006) Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoclusters. Paper presented at the Society for Neuroscience annual meeting, Atlanta, October 16, 2006

  • Viswaprakash N, Dennis JC, Globa L, Pustovyy O, Josephson EM, Kanju P, Morrison EE, Vodyanoy V (2009) Enhancement of odorant-induced response in olfactory receptor neurons by zinc nanoparticles. Chem Senses 34:547–557

    Article  CAS  PubMed  Google Scholar 

  • Viswaprakash N, Josephson EM, Dennis JC, Yilma S, Morrison EE, Vodyanoy VJ (2010) Odorant response kinetics from cultured mouse olfactory epithelium at different ages in vitro. Cells Tissues Organs 192:361–373

    Article  PubMed  Google Scholar 

  • Vodyanoy V (2010) Zinc nanoparticles interact with olfactory receptor neurons. Biometals 23:1097–1103. doi:10.1007/s10534-010-9355-8

    Article  CAS  PubMed  Google Scholar 

  • Vodyanoy V, Daniels Y, Pustovyy O, MacCrehan WA, Muramoto S, Stan G (2016) Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells. Int J Nanomed 11:1–10

    Article  Google Scholar 

  • Wade F, Espagne A, Persuy MA, Vidic J, Monnerie R, Merola F, Pajot-Augy E, Sanz G (2011) Relationship between homo-oligomerization of a mammalian olfactory receptor and its activation state demonstrated by bioluminescence resonance energy transfer. J Biol Chem 286:15252–15259. doi:10.1074/jbc.M110.184580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wöll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82:55–120. doi:10.1016/j.progsurf.2006.12.002

    Article  Google Scholar 

  • Wright RH (1977) Odor and molecular vibration: neural coding of olfactory information. J Theor Biol 64:473–502

    Article  CAS  PubMed  Google Scholar 

  • Yoo MH, Wei CT (1967) Slip modes of hexagonal-close-packed metals. J Appl Phys 38:4317–4322. doi:10.1063/1.1709121

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang D, Li N, Lu Y, Yao Y, Li S, Liu Q (2016) Zinc nanoparticles-equipped bioelectronic nose using a microelectrode array for odorant detection. Anal Sci 32:387–393. doi:10.2116/analsci.32.387

    Article  CAS  PubMed  Google Scholar 

  • Zufall F, Firestein S, Shepherd GM (1991) Analysis of single cyclic-nucleotide gated channels in olfactory receptor-cells. J Neurosci 11:3573–3580

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded by NIST Grant: 70 NANB14H324

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Vodyanoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagerty, S., Daniels, Y., Singletary, M. et al. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants. Biometals 29, 1005–1018 (2016). https://doi.org/10.1007/s10534-016-9972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9972-y

Keywords

Navigation