Skip to main content
Log in

Physiological implications of mammalian ferritin-binding proteins interacting with circulating ferritin and a new aspect of ferritin- and zinc-binding proteins

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Serum ferritin levels are relatively low (<1 µg/ml) and serum ferritin generally disappears rapidly from the circulation (t 1/2 < 10 min). There are various mammalian ferritin-binding proteins (FBPs) in the blood. Ferritin is cleared by direct uptake by ferritin receptors and by indirect receptor-mediated uptake of FBP complexed with ferritin. Mammalian ferritin binds both heme and iron, and binding occurs through two mechanisms: direct binding with ferritin to H-kininogen and anti-ferritin autoantibody, and indirect heme-mediated binding of fibrinogen and apolipoprotein B to ferritin. Anti-ferritin autoantibody and fibrinogen are proposed to be common mammalian FBPs, as is α2-macroglobulin. FBP-ferritin binding may affect blood coagulation and influence iron metabolism, oxidative condition, angiogenesis, inflammatory condition and immune response. Aside from apolipoprotein B, FBPs bind zinc ion to form antioxidant and anti-inflammatory agents. The possible simultaneous uptake of zinc ion with FBP-ferritin complex is likely to attenuate iron- and/or heme-mediated oxidative damage and inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alkhateeb AA, Connor JR (2013) The significance of ferritin in cancer: anti-oxidation, inflammation and tumorigenesis. Biochim Biophys Acta 1836:245–254

    CAS  PubMed  Google Scholar 

  • Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Babaeva EE, Vorobyova UA, Denisova EA, Medvedeva DA, Cheknev SB (2006) Binding of zinc cations to human serum γ-globulin. Bull Exp Biol Med 141:602–605

    Article  CAS  PubMed  Google Scholar 

  • Cazzola M, Bergamaschi G, Tonon L, Arbustini E, Grasso M, Vercesi E, Barosi G, Bianchi PE, Cairo G, Arosio P (1997) Hereditary hyperferritinemia-cataract syndrome: relationship between phenotypes and specific mutations in the iron-responsive element of ferritin light-chain mRNA. Blood 90:814–821

    CAS  PubMed  Google Scholar 

  • Chen MF, Mo LR, Lin RC, Kuo JY, Chang KK, Liano C, Lu FJ (1997) Increase of resting levels of superoxide anion in the whole blood of patients with decompensated liver cirrhosis. Free Radic Biol Med 23:672–679

    Article  CAS  PubMed  Google Scholar 

  • Clark RJ, Tan CC, Preza GC, Nemeth E, Ganz T, Craik DJ (2011) Understanding the structure/activity relationships of the iron regulatory peptide hepcidin. Chem Biol 18:336–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coffman LG, Parsonage D, D’Agostino R, Torti FM, Torti SV (2009) Regulatory effects of ferritin on angiogenesis. Proc Natl Acad Sci USA 106:570–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Domeniko ID, Ward DM, Kaplan J (2009) Serum ferritin regulates blood vessel formation: a role beyond iron storage. Proc Natl Acad Sci USA 106:1683–1684

    Article  Google Scholar 

  • Evstatiev R, Gasche C (2012) Iron sensing and signaling. Gut 61:933–952

    Article  CAS  PubMed  Google Scholar 

  • Feinman RD, Yuan AI, Windwer SR, Wang D (1985) Kinetics of the reaction of thrombin and α2-macroglobulin. Biochem J 231:417–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ganz T, Nemeth E (2012) Hepcidin and iron homeostasis. Biochim Biophys Acta 1823:1434–1443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh S, Hevi S, Chuck SL (2004) Regulated secretion of glycosylated human ferritin from hepatocytes. Blood 103:2369–2376

    Article  CAS  PubMed  Google Scholar 

  • Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354

    Article  CAS  PubMed  Google Scholar 

  • Gustafson EJ, Lukasiewicz HL, Wachtfogel YT, Norton KJ, Schmaier AH, Niewirowski S, Colman RW (1989) High molecular weight kininogen inhibits fibrinogen binding to cytoadhesins of neutrophils and platelets. J Cell Biol 109:377–387

    Article  CAS  PubMed  Google Scholar 

  • Han J, Seaman WE, Di X, Wang W, Willingham M, Torti FM, Torti SV (2011) Iron uptake mediated by binding of H-ferritin to the TIM-2 receptor in mouse cells. PLoS ONE 6:e23800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herwald H, Mörgelin M, Svensson HG, Sjöbring U (2001) Zinc-dependent conformational changes in domain D5 of high molecular mass kininogen modulate contact activation. Eur J Biochem 268:396–404

    Article  CAS  PubMed  Google Scholar 

  • Higashi S, Nagasawa K, Yoshikawa Y, Watanabe K, Orino K (2014) Characterization analysis of human anti-ferritin autoantibodies. Antibodies 3:169–181

    Article  CAS  Google Scholar 

  • Hintze KJ, Theil EC (2006) Cellular regulation and molecular interactions of the ferritins. Cell Mol Life Sci 63:591–600

    Article  CAS  PubMed  Google Scholar 

  • Ieko M, Sawada K, Yasukouchi S, Sakurama S, Tohma Y, Shiroshita K, Kurosawa S, Ohmoto A, Kohno M, Satoh M, Koike T (1997) Protection by α2-macroglobulin of tissue plasminogen activator against inhibition by plasminogen activator inhibitor-1. Br J Haematol 97:214–218

    Article  CAS  PubMed  Google Scholar 

  • Inagaki I, Mukuriya N, Morita S, Haraguchi H, Nakahara Y, Hattori M, Kinosita T, Saito H (2000) Speciation of protein-binding zinc and copper in human blood serum by chelating resin pre-treatment and inductively coupled plasma mass spectrometry. Analyst 125:197–203

    Article  CAS  PubMed  Google Scholar 

  • Jutz G, van Rijn P, Miranda BS, Böker A (2015) Ferritin: a versatile building block for bionanotechnology. Chem Rev 115:1653–1701

    Article  CAS  PubMed  Google Scholar 

  • Kanno Y, Ohtsuka H, Yoshikawa Y, Watanabe K, Orino K (2013) Measurement of ferritin and anti-ferritin autoantibodies in serum and colostrum of Holstein and Japanese Black cows. Anim Sci J 84:556–561

    Article  CAS  PubMed  Google Scholar 

  • Kaplan IV, Attaelmannan M, Levinson SS (2001) Fibrinogen is an antioxidant that protects β-lipoproteins at physiological concentrations in a cell free system. Atherosclerosis 158:455–463

    Article  CAS  PubMed  Google Scholar 

  • Kaufman N, Page JD, Pixley RA, Schein R, Schmaier AH, Colman RW (1991) α2-Macroglobulin-kallikrein complexes detect contact system activation in hereditary angioedema and human sepsis. Blood 77:2660–2667

    CAS  PubMed  Google Scholar 

  • Kell DB, Pretorius E (2014) Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 6:748–773

    Article  CAS  PubMed  Google Scholar 

  • Kilicarslan A, Uysal A, Roach EC (2013) Acute phase reactants. Acta Med 2:2–7

    Google Scholar 

  • Kounnas MZ, Morris RE, Thompson MR, FitzGerald DJ, Strickland DK, Saelinger CB (1992) The α2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. J Biol Chem 267:12420–12423

    CAS  PubMed  Google Scholar 

  • Latunde-Dada GO (2009) Iron metabolism: microbes, mouse, and man. BioEssays 31:1309–1317

    Article  CAS  PubMed  Google Scholar 

  • Levi S, Rovida E (2015) Neuroferritiopathy: from ferritin structure modification to pathogenic mechanism. Neurobiol Dis 81:134–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lutz HU, Binder CJ, Kaveri S (2008) Naturally occurring auto-antibodies in homeostasis and disease. Trends Immunol 30:43–51

    Article  PubMed  Google Scholar 

  • Mikhael M, Sheftel AD, Ponka P (2010) Ferritin does not donate its iron for haem synthesis in macrophages. Biochem J 429:463–471

    Article  CAS  PubMed  Google Scholar 

  • Mocchegiani E, Costrelli L, Giacconi R, Cipriano C, Muti E, Malavolta M (2006) Zinc-binding proteins (metallothionein and α-2 macroglobulin) and immunosenescene. Exp Gerontol 41:1094–1107

    Article  CAS  PubMed  Google Scholar 

  • Nielsen P, Günther U, Dürken M, Fischer R, Dullmann J (2000) Serum ferritin ion in iron overload and liver damage: correlation to body iron stores and diagnostic relevance. J Lab Clin Med 135:413–418

    Article  CAS  PubMed  Google Scholar 

  • Niitsu Y, Adachi C, Takahashi F, Goto Y, Kohgo Y, Urushizaki I, Listowsky I (1985) Concentration-dependent sedimentation properties of ferritin: implications for estimation of iron contents of serum ferritins. Am J Hematol 18:363–371

    Article  CAS  PubMed  Google Scholar 

  • Nowak P, Zbikowska HM, Ponczek M, Kolodziejczyk J, Wachowicz B (2007) Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced by peroxynitrite: functional consequences. Thromb Res 121:163–174

    Article  CAS  PubMed  Google Scholar 

  • Numata M, Kondo T, Nambo Y, Yoshikawa Y, Watanabe K, Orino K (2013) Change of antibody levels to ferritin in the sera of foals after birth: possible passive transfer of maternal anti-ferritin autoantibody via colostrum and age-related anti-ferritin autoantibody production. Anim Sci J 84:782–789

    Article  CAS  PubMed  Google Scholar 

  • Okada A, Yoshikawa Y, Watanabe K, Orino K (2015) Analysis of the binding of bovine and human fibrinogen to ferritin: evidence that fibrinogen is a common ferritin-binding protein in mammals. Biometals 28:679–685

    Article  CAS  PubMed  Google Scholar 

  • Olinescu RM, Kummerow FA (2001) Fibrinogen is an efficient antioxidant. J Nutr Biochem 12:162–169

    Article  CAS  PubMed  Google Scholar 

  • Orino K (2013) Functional binding analysis of human fibrinogen as an iron- and heme-binding protein. Biometals 26:789–794

    Article  CAS  PubMed  Google Scholar 

  • Orino K, Watanabe K (2008) Molecular, physiological and clinical aspects of the iron storage protein ferritin. Vet J 178:191–201

    Article  CAS  PubMed  Google Scholar 

  • Orino K, Uehara M, Okano S, Watanabe K (2006) Purification and characterization of canine serum ferritin-binding proteins. Biometals 19:315–322

    Article  CAS  PubMed  Google Scholar 

  • Padmasekar M, Namdigama R, Wartenberg M, Schlüter KD, Sauer H (2007) The acute phase protein α2-macroglobulin induces rat ventricular cardiomyocyte hypertrophy via ERK1,2 and PI3-kinase/Akt pathways. Cardiovasc Res 75:118–128

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy N, Torti SV, Torti FM (2002) Ferritin binds to light chain of human H-kininogen and inhibits kallikrein-mediated bradykin release. Biochem J 365:279–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peslova G, Petrak J, Kuzelova K, Hrdy I, Halada P, Kuchel PW, Soe-Lin S, Ponka P, Sutak R, Becker E, Huang MLH, Rahmanto YS, Richardson DR, Vyoral D (2009) Hepcidin, the hormone of iron metabolism, is bound specifically to α-2-macroglobulin in blood. Blood 113:6225–6236

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 12:646–652

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2014) Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Front Nutr 1:1–10

    Article  Google Scholar 

  • Recalcati S, Invernizzi P, Arosio P, Cairo G (2008) New functions for an iron storage protein: the role of ferritin in immunity and autoimmunity. J Autoimmun 30:84–89

    Article  CAS  PubMed  Google Scholar 

  • Richardson DR, Ponka P (1997) The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta 1331:1–40

    Article  CAS  PubMed  Google Scholar 

  • Riedel T, Suttnar J, Brynda E, Houska M, Medved L, Dyr JE (2011) Fibrinopeptides A and B release in the process of surface fibrin formation. Blood 117:1700–1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosário C, Zandman-Goddard G, Meyron-Holtz EG, D’Cruz DP, Shoenfeld Y (2013) The hyperferritinemic syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med 11:185

    Article  PubMed Central  PubMed  Google Scholar 

  • Sassa S (2004) Why heme needs to be degraded to iron, biliverdin IXα, and carbon monoxide? Antioxid Redox Signal 6:819–824

    Article  CAS  PubMed  Google Scholar 

  • Sassa S (2006) Biological implications of heme metabolism. J Clin Biochem Nutr 38:138–155

    Article  CAS  Google Scholar 

  • Shacter E, Williams JA, Levine RL (1995) Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radic Biol Med 18:815–821

    Article  CAS  PubMed  Google Scholar 

  • Sharma JN (2005) The kallikrein-kinin system: from mediator of inflammation to modulator of cardioprotection. Inflammopharmacol 12:591–596

    Article  CAS  Google Scholar 

  • Sherer Y, Shonenfeld Y (2006) Mechanisms of disease: atherosclerosis in autoimmune diseases. Nature Clin Prac Rheumatol 2:99–106

    Article  CAS  Google Scholar 

  • Shibuya N, Yoshikawa Y, Watanabe K, Ohtsuka H, Orino K (2012) Iron-dependent binding of bovine milk α-casein with holo-lactoferrin, but not holo-transferrin. Biometals 25:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Sugawara G, Inoue R, Watanabe K, Orino K (2008) Bovine α-casein is a ferritin-binding protein and inhibitory factor of milk ferritin immunoassay. J Dairy Sci 92:3810–3814

    Article  Google Scholar 

  • Takahashi K, Kondo T, Yoshikawa Y, Watanabe K, Orino K (2013) The presence of heat-labile factors interfering with binding analysis of fibrinogen with ferritin in horse plasma. Acta Vet Scand 55:70

    Article  PubMed Central  PubMed  Google Scholar 

  • Theil EC (2013) Ferritin: the protein nanocage and iron biomineral in health and in disease. Inorg Chem 52:12223–12233

    Article  CAS  PubMed  Google Scholar 

  • Thomas CE, Morehouse LA, Aust SD (1985) Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem 260:3275–3280

    CAS  PubMed  Google Scholar 

  • Tran TN, Eubanks SK, Schaffer KJ, Zhou CYJ, Linder MC (1997) Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. Blood 90:4979–4986

    CAS  PubMed  Google Scholar 

  • Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV (2010) Serum ferritin: past, present and future. Biochim Biophys Acta 1800:760–769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe M, Yuge M, Uda A, Yoshikawa Y, Watanabe K, Orino K (2011) Structural and functional analyses of chicken liver ferritin. Poult Sci 96:1489–1495

    Article  Google Scholar 

  • Watt RK (2011) The many faces of the octahedral ferritin protein. Biometals 24:489–500

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson N, Pantopoulos K (2014) The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol 5:1–15

    Article  CAS  Google Scholar 

  • Worwood M, Cragg SJ, Williams AM, Wagstaff M, Jacobs A (1982) The clearance of 131I-human plasma ferritin in man. Blood 60:827–833

    CAS  PubMed  Google Scholar 

  • Wyatt AR, Kumita JR, Mifsud RW, Gooden CA, Wilson MR, Dobson CM (2014) Hypochlorite-induced structural modifications enhance the chaperone activity of human α2-macroglobulin. Proc Natl Acad Sci USA 111:E2081–E2090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida A, Niki M, Yamamoto Y, Yasunaga A, Ansai T (2015) Proteome analysis identifies the Dpr protein of Streptococcus mutans as an important factor in the presence of early streptococcal colonizers of tooth surfaces. PLoS ONE 10:e0121176

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Orino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orino, K. Physiological implications of mammalian ferritin-binding proteins interacting with circulating ferritin and a new aspect of ferritin- and zinc-binding proteins. Biometals 29, 15–24 (2016). https://doi.org/10.1007/s10534-015-9897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9897-x

Keywords

Navigation