Skip to main content
Log in

Interaction of divalent metal ions with the carboxyl-terminal domain of human voltage-gated proton channel Hv1

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The voltage-gated proton channel Hv1 functions as a dimer, in which the intracellular C-terminal domain of the protein is responsible for the dimeric architecture and regulates proton permeability. Although it is well known that divalent metal ions have effect on the proton channel activity, the interaction of divalent metal ions with the channel in detail is not well elucidated. Herein, we investigated the interaction of divalent metal ions with the C-terminal domain of human Hv1 by CD spectra and fluorescence spectroscopy. The divalent metal ions binding induced an obvious conformational change at pH 7 and a pH-sensitive reduction of thermostability in the C-terminal domain. The interactions were further estimated by fluorescence spectroscopy experiments. There are at least two binding sites for divalent metal ions binding to the C-terminal domain of Hv1, either of which is close to His244 or His266 residue. The binding of Zn2+ to the two sites both enhanced the fluorescence of the protein at pH 7, whereas the binding of other divalent metal ions to the two sites all resulted fluorescence quenching. The orders of the strength of divalent metal ions binding to the two sites from strong to weak are both Co2+, Ca2+, Ni2+, Mg2+, and Mn2+. The strength of Ca2+, Co2+, Mg2+, Mn2+ and Ni2+ binding to the site close to His244 is stronger than that of these divalent metal ions binding to the site close to His266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Auld D (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313

    Article  CAS  PubMed  Google Scholar 

  • Bi S, Song D, Tian Y, Zhou X, Liu Z, Zhang H (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta A 61:629–636

    Article  Google Scholar 

  • Cherny VV, DeCoursey TE (1999) pH-dependent inhibition of voltage-gated H+ currents in rat alveolar epithelial cells by Zn2+ and other divalent cations. J Gen Physiol 114:819–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cherny VV, Markin VS, DeCoursey TE (1995) The voltage-activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient. J Gen Physiol 105:861–896

    Article  CAS  PubMed  Google Scholar 

  • Clark R, Leidal K, Pearson D, Nauseef W (1987) NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem 262:4065–4074

    CAS  PubMed  Google Scholar 

  • DeCoursey TE (1991) Hydrogen ion currents in rat alveolar epithelial cells. Biophys J 60:1243–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Decoursey TE (2003) Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 83:475–579

    CAS  PubMed  Google Scholar 

  • DeCoursey TE (2008) Voltage-gated proton channels. Cell Mol Life Sci 65:2554–2573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeCoursey TE (2013) Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the Hv family. Physiol Rev 93:599–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeCoursey TE, Cherny VV (1994) Voltage-activated hydrogen ion currents. J Membr Biol 141:203–223

    Article  CAS  PubMed  Google Scholar 

  • Eder C, DeCoursey TE (2001) Voltage-gated proton channels in microglia. Prog Neurobiol 64:277–305

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Kurokawa T, Takeshita K, Kobayashi M, Nakagawa A, Okamura Y (2011) Stability of the cytoplasmic dimer assembly regulates the thermosensitive gating of the voltage-gated H+ channel. Biophys J 100:348a

    Article  Google Scholar 

  • Fujiwara Y, Kurokawa T, Takeshita K, Kobayashi M, Okochi Y, Nakagawa A, Okamura Y (2012) The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H+ channel Hv1. Nat Commun 3:816

    Article  PubMed  Google Scholar 

  • Gonzalez C, Koch HP, Drum BM, Larsson HP (2009) Strong cooperativity between subunits in voltage-gated proton channels. Nat Struct Mol Biol 17:51–56

    Article  PubMed Central  PubMed  Google Scholar 

  • Koch HP, Kurokawa T, Okochi Y, Sasaki M, Okamura Y, Larsson HP (2008) Multimeric nature of voltage-gated proton channels. Proc Natl Acad Sci USA 105:9111–9116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Letts JA, MacKinnon R (2008) Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proc Natl Acad Sci USA 105:7692–7695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li SJ, Zhao Q, Zhou Q, Zhai Y (2009) Expression, purification, crystallization and preliminary crystallographic study of the carboxyl-terminal domain of the human voltage-gated proton channel Hv1. Acta Crystallogr F65:279–281

    Google Scholar 

  • Li SJ, Zhao Q, Zhou Q, Unno H, Zhai Y, Sun F (2010) The role and structure of the carboxyl-terminal domain of the human voltage-gated proton channel Hv1. J Biol Chem 285:12047–12054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y (2010) Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140:327–337

    Article  CAS  PubMed  Google Scholar 

  • Mason JM, Hagemann UB, Arndt KM (2007) Improved stability of the Jun-Fos activator protein-1 coiled-coil motif a stopped-flow circular dichroism kinetic analysis. J Biol Chem 282:23015–23024

    Article  CAS  PubMed  Google Scholar 

  • Morgan D, Cherny VV, Murphy R, Katz BZ, DeCoursey TE (2005) The pH dependence of NADPH oxidase in human eosinophils. J Gen Physiol 569:419–431

    Article  CAS  Google Scholar 

  • Musset B, Cherny VV, Morgan D, DeCoursey TE (2009) The intimate and mysterious relationship between proton channels and NADPH oxidase. FEBS Lett 583:7–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Musset B, Smith SME, Rajan S, Cherny VV, Morgan D, DeCoursey TE (2010a) Oligomerization of the voltage-gated proton channel. Channels 4:260–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Musset B, Smith SME, Rajan S, Cherny VV, Sujai S, Morgan D, DeCoursey TE (2010b) Zinc inhibition of monomeric and dimeric proton channels suggests cooperative gating. J Physiol 588:1435–1449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okamura Y (2007) Biodiversity of voltage sensor domain proteins. Pflügers Arch 454:361–371

    Article  CAS  PubMed  Google Scholar 

  • Okochi Y, Sasaki M, Iwasaki H, Okamura Y (2009) Voltage-gated proton channel is expressed on phagosomes. Biochem Biophys Res Commun 382:274–279

    Article  CAS  PubMed  Google Scholar 

  • Ramsey IS, Moran MM, Chong JA, Clapham DE (2006) A voltage-gated proton-selective channel lacking the pore domain. Nature 440:1213–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramsey IS, Ruchti E, Kaczmarek JS, Clapham DE (2009) Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc Natl Acad Sci USA 106:7642–7647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki M, Takagi M, Okamura Y (2006) A voltage sensor-domain protein is a voltage-gated proton channel. Science 312:589–592

    Article  CAS  PubMed  Google Scholar 

  • Shaikh SMT, Seetharamappa J, Ashoka S, Kandagal PB (2007) A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods. Dyes Pigments 73:211–216

    Article  CAS  Google Scholar 

  • Tombola F, Ulbrich MH, Isacoff EY (2008) The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron 58:546–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Li SJ, Pan J, Che Y, Yin J, Zhao Q (2011) Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis. Biochem Biophys Res Commun 412:353–359

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li SJ, Wu X, Che Y, Li Q (2012) Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J Biol Chem 287:13877–13888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Wu X, Li Q, Zhang S, Li SJ (2013a) Human voltages-gated proton channel Hv1: a new potential biomarker for diagnosis and prognosis of colorectal cancer. PLoS One 5(8):e70550

    Article  Google Scholar 

  • Wang Y, Zhang S, Li SJ (2013b) Zn2+ induces apoptosis in human highly metastatic SHG-44 glioma cells, through inhibiting activity of the voltage-gated proton channel Hv1. Biochem Biophys Res Commun 438:312–317

    Article  CAS  PubMed  Google Scholar 

  • Ware WR (1962) Oxygen quenching in fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66:455–458

    Article  CAS  Google Scholar 

  • Wu LJ, Wu G, Sharif MRA, Baker A, Jia Y, Fahey FH, Luo HR, Feener EP, Clapham DE (2012) The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nat Neurosci 15:565–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Deng H, Zhao Q, Li SJ (2012) Interaction of presequence with human translocase of the inner membrane of mitochondria Tim50. J Phys Chem B 116:2990–2998

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 30970579 and 31271464), and the Ph.D. Programs Foundation of Ministry of Education of China (No. 20110031110004 and 20120031110028), and the Basic Science and Advance Technology Research Program of Tianjin (No. 14JCYBJC23400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Jie Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zhang, Y. & Li, S.J. Interaction of divalent metal ions with the carboxyl-terminal domain of human voltage-gated proton channel Hv1. Biometals 27, 793–802 (2014). https://doi.org/10.1007/s10534-014-9751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9751-6

Keywords

Navigation