Skip to main content
Log in

Voltage-activated hydrogen ion currents

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adrian, R.H., Chandler, W.K., Hodgkin, A.L. 1970. Slow changes in potassium permeability in skeletal muscle. J. Physiol. 208:645–668

    Google Scholar 

  2. Åkerfeldt, K.S., Lear, J.D., Wasserman, Z.R., Chung, L.A., De-Grado, W.F. 1993. Synthetic peptides as models for ion channel proteins. Acc. Chem. Res. 26:191–197

    Google Scholar 

  3. Akeson, M., Deamer, D.W. 1991. Proton conductance by the gramicidin water wire: model for proton conductance in the F0F1 ATPases? Biophys. J. 60:101–109

    Google Scholar 

  4. Al-Baldawi, N.F., Abercrombie, R.F. 1992. Cytoplasmic hydrogen ion diffusion coefficient. Biophys. J. 61:1470–1479

    Google Scholar 

  5. Althoff, G., Lill, H., Junge, W. 1989. Proton channel of the chloroplast ATP synthase, CF0: Its time-averaged single-channel conductance as function of pH, temperature, isotopic and ionic medium composition. J. Membrane Biol. 108:263–271

    Google Scholar 

  6. Andersen, O.S. 1983. Ion movement through gramicidin A channels: studies on the diffusion-controlled association step. Biophys. J. 41:147–165

    Google Scholar 

  7. Armstrong, C.M. 1969. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J. Gen. Physiol. 54:553–575

    Google Scholar 

  8. Aronson, P.S., Nee, J., Suhm, M.A. 1982. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature 299:161–163

    Google Scholar 

  9. Barish, M.E., Baud, C. 1984. A voltage-gated hydrogen ion current in the oocyte membrane of the axolotl, Ambystoma. J. Physiol. 352:243–263

    Google Scholar 

  10. Barry, P.H., Diamond, J.M. 1984. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64:763–872

    Google Scholar 

  11. Barry, P.H., Lynch, J.W. 1991. Liquid junction potentials and small cell effects in patch-clamp analysis. J. Membrane Biol. 121:101–117

    Google Scholar 

  12. Baud, C., Barish, M.E. 1984. Changes in membrane hydrogen and sodium conductances during progesterone-induced maturation of Ambystoma oocytes. Dev. Biol. 105:423–434

    Google Scholar 

  13. Begenisich, T., Danko, M. 1983. Hydrogen ion block of the sodium pore in squid giant axons. J. Gen. Physiol. 82:599–618

    Google Scholar 

  14. Bernal, J.D., Fowler, R.H. 1933. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1:515–548

    Google Scholar 

  15. Bernheim, L., Krause, R.M., Baroffio, A., Hamann, M., Kaelin, A., Bader, C.-R. 1993. A voltage-dependent proton current in cultured human skeletal muscle myotubes. J. Physiol. 470:313–333

    Google Scholar 

  16. Blair, D.F., Berg, H.C. 1990. The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60:439–449

    Google Scholar 

  17. Boron, W.F. 1983. Transport of H+ and of ionic weak acids and bases. J. Membrane Biol. 72:1–16

    Google Scholar 

  18. Boron, W.F. 1986. Intracellular pH regulation in epithelial cells. Annu. Rev. Physiol. 48:377–388

    Google Scholar 

  19. Boron, W.F., Boulpaep, E.L. 1989. The electrogenic Na/HCO3 cotransporter. Kidney Int. 36:392–402

    Google Scholar 

  20. Brown, S.E.S., Heming, T.A., Benedict, C.R., Bidani, A. 1991. ATP-sensitive Na+-H+ antiport in type II alveolar epithelial cells. Am. J. Physiol. 261:C954-C963

    Google Scholar 

  21. Busa, W.B. 1986. Mechanisms and consequences of pH-mediated cell regulation. Annu. Rev. Physiol. 48:389–402

    Google Scholar 

  22. Byerly, L., Meech, R., Moody, W. 1984. Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis. J. Physiol. 351:199–216

    Google Scholar 

  23. Byerly, L., Moody, W.J. 1986. Membrane currents of internally perfused neurones of the snail, Lymnaea stagnalis, at low intracellular pH. J. Physiol. 376:477–491

    Google Scholar 

  24. Byerly, L., Suen, Y. 1989. Characterization of proton currents in neurones of the snail, Lymnaea stagnalis. J. Physiol. 413:75–89

    Google Scholar 

  25. Catterall, W.A. 1993. Structure and function of voltage-gated ion channels. Trends Neurosci. 16:500–506

    Google Scholar 

  26. Chander, A. 1989. Regulation of lung surfactant secretion by intracellular pH. Am. J. Physiol. 257:L354-L360

    Google Scholar 

  27. Chen, M.-S., Onsager, L., Bonner, J., Nagle, J. 1974. Hopping of ions in ice. J. Chem. Phys. 60:405–419

    Google Scholar 

  28. Cherny, V.V., Sikharulidze, M.G., Mirsky, V.M., Sokolov, V.S. 1993. Potential distribution on the lipid bilayer membrane due to the phospholipase A2 activity. Biol. Membr. 6:971–982

    Google Scholar 

  29. Cherny, V.V., Simonova, M.V., Sokolov, V.S., Markin, V.S. 1990. Transport of the neutral form of amphiphilic drugs through a planar bilayer lipid membrane: the role of the pH gradient. Bioelectrochem. Bioenerg. 23:17–25

    Google Scholar 

  30. Chung, L.A., Lear, J.D., DeGrado, W.F. 1992. Fluorescence studies of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles. Biochemistry 31:6608–6616

    Google Scholar 

  31. Ciani, S., Krasne, S., Miyazaki, S., Hagiwara, S. 1978. A model for anomalous rectification: Electrochemical-potential-dependent gating of membrane channels. J. Membrane Biol. 44:103–134

    Google Scholar 

  32. Cole, K.S., Moore, J.W. 1960. Potassium ion current in the squid giant axon: dynamic characteristic. Biophys. J. 1:1–14

    Google Scholar 

  33. Collier, W.B., Ritzhaupt, G., Devlin, J.P. 1984. Spectroscopically evaluated rates and energies for proton transfer and Bjerrum defect migration in cubic ice. J. Phys. Chem. 88:363–368

    Google Scholar 

  34. Conway, B.E., Bockris, J.O'M., Linton, H. 1956. Proton conductance and the existence of the H3O ion. J. Chem. Phys. 24:834–850

    Google Scholar 

  35. Danneel, H. 1905. Notiz über lonengeschwindigkeiten. Z. Elektrochem. 11:249–252

    Google Scholar 

  36. Deamer, D.W., Nichols, J.W. 1989. Proton flux mechanisms in model and biological membranes. J. Membrane Biol. 107:91–103

    Google Scholar 

  37. Decker, E.R., Levitt, D.G. 1988. Use of weak acids to determine the bulk diffusion limitation of H+ ion conductance through the gramicidin channel. Biophys. J. 53:25–32

    Google Scholar 

  38. DeCoursey, T.E. 1991. Hydrogen ion currents in rat alveolar epithelial cells. Biophys. J. 60:1243–1253

    Google Scholar 

  39. DeCoursey, T.E., Cherny, V.V. 1993. Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys. J. 65:1590–1598

    Google Scholar 

  40. DeCoursey, T.E., Cherny, V.V. 1994. Na+-H+ antiport detected through hydrogen ion currents in rat alveolar epithelial cells and human neutrophils. J. Gen. Physiol. 103:755–785

    Google Scholar 

  41. DeGrado, W.F., Lear, J.D. 1990. Conformationally constrained α-helical peptide models for protein ion channels. Biopolymers 29:205–213

    Google Scholar 

  42. Demaurex, N., Grinstein, S., Jaconi, M., Schlegel, W., Lew, D.P., Krause, K.-H. 1993. Proton currents in human granulocytes: regulation by membrane potential and intracellular pH. J. Physiol. 466:329–344

    Google Scholar 

  43. Demaurex, N., Schrenzel, J., Jaconi, M.E., Lew, D.P., Krause, K.-H. 1993. Proton channels, plasma membrane potential, and respiratory burst in human neutrophils. Eur. J. Haematol. 51:309–312

    Google Scholar 

  44. De Weer, P., Rakowski, R.F., Gadsby, D.C. 1994. Voltage sensitivity of the Na+/K+ pump: structural implications. Seventh International Sodium Pump Conference. Steinkopf Verlag, Darmstadt

    Google Scholar 

  45. Duff, K.C., Ashley, R.H. 1992. The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology 190:485–489

    Google Scholar 

  46. Eigen, M., DeMaeyer, L. 1958. Self-dissociation and protonic charge transport in water and ice. Proc. Roy. Soc. Lond. A 247:505–533

    Google Scholar 

  47. Eisenberg, M., Hall, J.E., Mead, C.A. 1973. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J. Membrane Biol. 14:143–176

    Google Scholar 

  48. Frankenhaeuser, B., Hodgkin, A.L. 1956. The after-effects of impulses in the giant nerve fibres of Loligo. J. Physiol. 131: 341–376

    Google Scholar 

  49. Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons. J. Physiol. 137:218–244

    Google Scholar 

  50. Frey, G., Schule, W.-R. 1993. pH recovery from intracellular alkalinization in Retzius neurones of the leech central nervous system. J. Physiol. 462:627–643

    Google Scholar 

  51. Gadsby, D.C., Rakowski, R.F., DeWeer, P. 1993. Extracellular access to the Na,K pump: pathway similar to ion channel. Science 260:100–103

    CAS  PubMed  Google Scholar 

  52. Gilbert, D.L., Ehrenstein, G. 1970. Use of a fixed charge model to determine the pK of the negative sites on the external membrane. J. Gen. Physiol. 55:822–825

    Google Scholar 

  53. Gilbertson, T.A., Avenet, P., Kinnamon, S.C., Roper, S.D. 1992. Proton currents through amiloride-sensitive Na channels in hamster taste cells: role in acid transduction. J. Gen. Physiol. 100:803–824

    Google Scholar 

  54. Gilly, W.F., Armstrong, C.M. 1982. Divalent cations and the activation kinetics of potassium channels in squid giant axons. J. Gen. Physiol. 79:965–996

    Google Scholar 

  55. Gluck, S., Al-Awqati, Q. 1980. Vasopressin increases water permeability by inducing pores. Nature 284:631–632

    Google Scholar 

  56. Graber, M., DiPaola, J., Hsiang, F., Barry, C., Pastoriza, E. 1991. Intracellular pH in the OK cell. I. Identification of H+ conductance and observations on buffering capacity. Am. J. Physiol. 261:C1143-C1153

    Google Scholar 

  57. Green, W.N., Andersen, O.S. 1991. Surface charges and ion channel function. Annu. Rev. Physiol. 53:341–359

    Google Scholar 

  58. Grinstein, S., Rotin, D., Mason, M.J. 1989. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim. Biophys. Acta 988:73–97

    Google Scholar 

  59. Grzesiek, S., Dencher, N.A. 1986. Dependency of ΔpH-relaxation across vesicular membranes on the buffering power of bulk solutions and lipids. Biophys. J. 50:265–276

    Google Scholar 

  60. Gutknecht, J. 1987. Proton conductance through phospholipid bilayers: water wires or weak acids? J. Bioenerg. Biomembr. 19:427–442

    Google Scholar 

  61. Gutknecht, J., Tosteson, D.C. 1973. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers. Science 182:1258–1261

    CAS  PubMed  Google Scholar 

  62. Gutman, M., Tsfadia, Y., Masad, A., Nachliel, E. 1992. Quantitation of physical-chemical properties of the aqueous phase inside the phoE ionic channel. Biochim. Biophys. Acta 1109:141–148

    Google Scholar 

  63. Hagiwara, S., Takahashi, K. 1974. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J. Membrane Biol. 18:61–80

    Google Scholar 

  64. Haines, T.H. 1983. Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: a hypothesis. Proc. Natl. Acad. Sci. USA 80:160–164

    Google Scholar 

  65. Harris, H.W., Strange, K., Zeidel, M.L. 1991. Current understanding of the cellular biology and molecular structure of the antidiuretic hormone-stimulated water transport pathway. J. Clin. Invest. 88:1–8

    Google Scholar 

  66. Harvey, B., Lacoste, I., Ehrenfeld, J. 1991. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia: effects of oxytocin, heavy metals, and inhibitors of H+-adenosine triphosphatase. J. Gen. Physiol. 97:749–776

    Google Scholar 

  67. Heinemann, S.H., Sigworth, F.J. 1989. Estimation of Na+ dwell time in the gramicidin A channel. Na+ ions as blockers of H+ currents. Biochim. Biophys. Acta 987:8–14

    Google Scholar 

  68. Helenius, A. 1992. Unpacking the incoming influenza virus. Cell 69:577–578

    Google Scholar 

  69. Henderson, L.M., Chappell, J.B. 1992. The NADPH-oxidase-associated H+ channel is opened by arachidonate. Biochem. J. 283:171–175

    Google Scholar 

  70. Henderson, L.M., Chappell, J.B., Jones, O.T.G. 1987. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem. J. 246:325–329

    Google Scholar 

  71. Henderson, L.M., Chappell, J.B., Jones, O.T.G. 1988. Internal pH changes associated with the activity of NADPH oxidase of human neutrophils: further evidence for the presence of an H+ conducting channel. Biochem. J. 251:563–567

    Google Scholar 

  72. Henderson, L.M., Chappell, J.B., Jones, O.T.G. 1988. Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge. Biochem. J. 255:285–290

    Google Scholar 

  73. Hilgemann, D.W. 1994. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science 263:1429–1432

    Google Scholar 

  74. Hille, B. 1992. Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA

    Google Scholar 

  75. Hille, B., Schwarz, W. 1978. Potassium channels as multi-ion single-file pores. J. Gen. Physiol. 72:409–442

    Google Scholar 

  76. Hladky, S.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A: I. studies of the unit conductance channel. Biochim. Biophys. Acta 274:294–312

    Google Scholar 

  77. Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544

    CAS  PubMed  Google Scholar 

  78. Holevinsky, K.O., Jow, F., Nelson, D.J. 1994. Elevation in intracellular calcium activates both chloride and proton currents in human macrophages. J. Membrane Biol. 140:13–30

    Google Scholar 

  79. Hoppe, J., Sebald, W. 1984. The proton conducting F0-part of bacterial ATP synthases. Biochim. Biophys. Acta 768:1–27

    Google Scholar 

  80. Horowicz, P., Gage, P.W., Eisenberg, R.S. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle. J. Gen. Physiol. 51:193s-203s

    Google Scholar 

  81. Hückel, E. 1928. Theorie der Beweglichkeiten des Wasserstoffund Hydroxylions in wässriger Lösung. Z. Elektrochem. 34: 546–562

    Google Scholar 

  82. Jacobs, E.R., DeCoursey, T.E. 1990. Mechanisms of potassium channel block in rat alveolar epithelial cells. J. Pharmacol. Exp. Ther. 255:459–472

    Google Scholar 

  83. Jordan, P.C. 1987. How pore mouth charge distributions alter the permeability of transmembrane ionic channels. Biophys. J. 51:297–311

    Google Scholar 

  84. Junge, W. 1989. Protons, the thylakoid membrane, and the chloroplast ATP synthase. Ann. NY Acad. Sci. 574:268–285

    Google Scholar 

  85. Junge, W., McLaughlin, S. 1987. The role of fixed and mobile buffers in the kinetics of proton movement. Biochim. Biophys. Acta 890:1–5

    Google Scholar 

  86. Kapus, A., Romanek, R., Grinstein, S. (1994). Arachidonic acid stimulates the plasma membrane H+ conductance of macrophages. J. Biol. Chem. (in press)

  87. Kapus, A., Romanek, R., Qu, A.Y., Rotstein, O.D., Grinstein, S. 1993. A pH-sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages. J. Gen. Physiol. 102:729–760

    Google Scholar 

  88. Kapus, A., Szazi, K., Ligeti, E. 1992. Phorbol 12-myristate 13acetate activates an electrogenic H+-conducting pathway in the membrane of neutrophils. Biochem. J. 281:697–701

    Google Scholar 

  89. Kapus, A., Susztak, K., Ligeti, E. 1993. Regulation of the electrogenic H+ channel in the plasma membrane of neutrophils: possible role of phospholipase A2, internal and external protons. Biochem. J. 292:445–450

    Google Scholar 

  90. Kasianowicz, J., Benz, R., McLaughlin, S. 1987. How do protons cross the membrane-solution interface? Kinetic studies on bilayer membranes exposed to the protonophore S-13 (5-chloro-3-tert-butyl-2′-chloro-4′ nitrosalicylanilide). J. Membrane Biol. 95:73–89

    Google Scholar 

  91. Kiefer, H., Jähnig, F. 1994. Neutral phospholipids do not buffer at neutral pH. Biophys. J. 66:1733

    Google Scholar 

  92. Kim, S.Y., DeCoursey, T.E., Silver, M.R. 1994. Ion channels in the human macrophage cell line THP-1. Biophys. J. 66:A328

    Google Scholar 

  93. Kleyman, T.R., Cragoe, E.J., Jr. 1988. Amiloride and its analogs as tools in the study of ion transport. J. Membrane Biol. 105:1–21

    Google Scholar 

  94. Läuger, P. 1976. Diffusion-limited ion flow through pores. Biochim. Biophys. Acta 455:493–509

    Google Scholar 

  95. Läuger, P. 1987. Dynamics of ion transport systems in membranes. Physiol. Rev. 67:1296–1331

    Google Scholar 

  96. Läuger, P. 1991. Electrogenic Ion Pumps. Sinauer Associates, Sunderland, MA

    Google Scholar 

  97. Lear, J.D., Wasserman, Z.R., DeGrado, W.F. 1988. Synthetic amphiphilic peptide models for protein ion channels. Science 240:1177–1181

    Google Scholar 

  98. Lengyel, S., Conway, B.E. 1983. Proton solvation and proton transfer in chemical and electrochemical processes. In: Comprehensive Treatise of Electrochemistry: Thermodynamic and Transport Properties of Aqueous and Molten Electrolytes. B.E. Conway, J.O'M. Bockris, E. Yeager, editors. pp. 339–398. Plenum, New York

    Google Scholar 

  99. Levis, R.A., Rae, J.L. 1993. The use of quartz patch pipettes for low noise single channel recording. Biophys. J. 65:1666–1677

    Google Scholar 

  100. Levitt, D.G., Decker, E.R. 1988. Electrostatic radius of the gramicidin channel determined from voltage dependence of H+ ion conductance. Biophys. J. 53:33–38

    Google Scholar 

  101. Levitt, D.G., Elias, S.R., Hautman, J.M. 1978. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Biochim. Biophys. Acta 512:436–451

    Google Scholar 

  102. Lubman, R.L., Danto, S.I., Crandall, E.D. 1989. Evidence for active H+ secretion by rat alveolar epithelial cells. Am. J. Physiol 257:L438-L445

    Google Scholar 

  103. Lubman, R.L., Crandall, E.D. 1991. Na+-HCO 3 symport modulates intracellular pH in alveolar epithelial cells. Am. J. Physiol. 260:L555-L561

    Google Scholar 

  104. Lukacs, G.L., Kapus, A., Nanda, A., Romanek, R., Grinstein, S. 1993. Proton conductance of the plasma membrane: properties, regulation, and functional role. Am. J. Physiol. 265:C3-C14

    Google Scholar 

  105. Lyall, V., Belcher, T.S., Biber, T.U.L. 1992. Effect of changes in extracellular potassium on intracellular pH in principal cells of frog skin. Am. J. Physiol. 263:F722-F730

    Google Scholar 

  106. Lynch, C. 1985. Biochemical separation of delayed rectifier currents in frog skeletal muscle fibres. J. Physiol. 368:379–392

    Google Scholar 

  107. Mahaut-Smith, M. 1989. Separation of hydrogen ion currents in intact molluscan neurones. J. Exp. Biol. 145:439–454

    Google Scholar 

  108. Mahaut-Smith, M. 1989. The effect of zinc on calcium and hydrogen ion currents in intact snail neurones. J. Exp. Biol. 145:455–464

    Google Scholar 

  109. Mathias, R.T., Cohen, I.S., Oliva, C. 1990. Limitations of the whole cell patch clamp technique in the control of intracellular concentrations. Biophys. J. 58:759–770

    Google Scholar 

  110. McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces. Curr. Top. Membr. Transp. 9:71–144

    Google Scholar 

  111. McLaughlin, S.G.A., Dilger, J.P. 1980. Transport of protons across membranes by weak acids. Physiol. Rev. 60:825–863

    Google Scholar 

  112. Meech, R.W. 1986. Membranes, gates, and channels. In: The Mollusca. Vol. 9. A.O. Dennis Willows, editor. pp. 189–277. Academic, Orlando

    Google Scholar 

  113. Meech, R.W., Thomas, R.C. 1987. Voltage-dependent intracellular pH in Helix aspersa neurones. J. Physiol. 390:433–452

    Google Scholar 

  114. Miedema, H., Felle, H., Prins, H.B.A. 1992. Effect of high pH on the plasma membrane potential and conductance in Elodea densa. J. Membrane Biol. 128:63–69

    Google Scholar 

  115. Mitchell, P., Moyle, J. 1974. The mechanism of proton translocation in reversible proton-translocating adenosine triphosphatases. Biochem. Soc. Spec. Publ. 4:91–111

    Google Scholar 

  116. Moody, W. 1984. Effects of intracellular H+ on the electrical properties of excitable cells. Annu. Rev. Neurosci. 7:257–278

    Google Scholar 

  117. Moolenaar, W.H. 1986. Effects of growth factors on intracellular pH regulation. Annu. Rev. Physiol. 48:363–376

    Google Scholar 

  118. Mozhayeva, G.N., Naumov, A.P. 1983. The permeability of sodium channels to hydrogen ions in nerve fibres. Pfluegers Arch. 396:163–173

    Google Scholar 

  119. Myers, V.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A: the ion selectivity. Biochim. Biophys. Acta 274:313–322

    Google Scholar 

  120. Nagle, J.F. 1987. Theory of passive proton conductance in lipid bilayers. J. Bioenerg. Biomembr. 19:413–426

    Google Scholar 

  121. Nagle, J.F., Morowitz, H.J. 1978. Molecular mechanisms for proton transport in membranes. Proc. Natl. Acad. Sci. USA 75:298–302

    Google Scholar 

  122. Nagle, J.F., Tristram-Nagle, S. 1983. Hydrogen-bonded chain mechanisms for proton conduction and proton pumping. J. Membrane Biol. 74:1–14

    Google Scholar 

  123. Nagle, J.F., Tristram-Nagle, S. 1984. Elements of proton pump models. In: Information and Energy Transduction in Biological Membranes. pp. 103–111. Alan R. Liss, New York

    Google Scholar 

  124. Nanda, A., Grinstein, S. 1991. Protein kinase C activates an H+ (equivalent) conductance in the plasma membrane of human neutrophils. Proc. Natl. Acad. Sci USA 88:10816–10820

    Google Scholar 

  125. Nanda, A., Grinstein, S., Curnutte, J.T. 1993. Abnormal activation of H+ conductance in NADPH oxidase-defective neutrophils. Proc. Natl. Acad. Sci. USA 908:760–764

    Google Scholar 

  126. Neher, E., Sandblom, J., Eisenman, G. 1978. Ionic selectivity, saturation, and block in gramicidin A channels: II. Saturation behavior of single channel conductances and evidence for the existence of multiple binding sites in the channel. J. Membrane Biol. 40:91–116

    Google Scholar 

  127. Nicholls, D.G., Locke, R.M. 1984. Thermogenic mechanisms in brown fat. Physiol. Rev. 64:1–64

    Google Scholar 

  128. Nord, E.P., Brown, S.E.S., Crandall, E.D. 1987. Characterization of Na+-H+ antiport in type II alveolar epithelial cells. Am. J. Physiol. 252:C490-C498

    Google Scholar 

  129. Nord, E.P., Brown, S.E.S., Crandall, E.D. 1988. Cl/HCO 3 exchange modulates intracellular pH in rat type II alveolar epithelial cells. J. Biol. Chem. 263:5599–5606

    Google Scholar 

  130. Palmer, L.G. 1984. Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder. J. Membrane Biol. 80:153–165

    Google Scholar 

  131. Pennefather, P., DeCoursey, T.E. 1994. A scheme to account for the effects of Rb+ and K+ on inward rectifier K-channels of bovine artery endothelial cells. J. Gen. Physiol. 103:549–581

    Google Scholar 

  132. Pennefather, P., Oliva, C., Mulrine, N. 1992. Origin of the potassium and voltage dependence of the cardiac inwardly rectifying K-current (IK1). Biophys. J. 61:448–462

    Google Scholar 

  133. Pinto, L.H., Holsinger, L.J., Lamb, R.A. 1992. Influenza virus M2 protein has ion channel activity. Cell 69:517–528

    Article  CAS  PubMed  Google Scholar 

  134. Qu, A.Y., Nanda, A., Curnutte, J.T., Grinstein, S. 1994. Development of a H+ selective conductance during granulocytic differentiation of HL60 cells. Am. J. Physiol. 266:C1263-C1270

    Google Scholar 

  135. Rheuben, M.B. 1972. The resting potential of moth muscle fibre. J. Physiol. 225:529–554

    Google Scholar 

  136. Robinson, R.A., Stokes, R.H. 1959. Electrolyte Solutions. Butterworths, London

    Google Scholar 

  137. Roos, A., Boron, W.F. 1981. Intracellular pH. Physiol. Rev. 61:296–434

    Google Scholar 

  138. Schindler, H., Nelson, N. 1982. Proteolipid of adenosine-triphosphatase from yeast mitochondria forms proton-selective channels in planar lipid bilayers. Biochemistry 21:5787–5794

    Google Scholar 

  139. Schneider, E., Altendorf, K. 1987. Bacterial adenosine 5′triphosphate synthase (F1F0): purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits. Microbiol. Rev. 51:477–497

    Google Scholar 

  140. Schoenknecht, G., Junge, W., Lill, H., Engelbrecht, S. 1986. Complete tracking of proton flow in thylakoids—the unit conductance of CF0 is greater than 10 fS. FEBS Lett. 203:289–294

    Google Scholar 

  141. Schönknecht, G., Althoff, G., Apley, E., Wagner, R., Junge, W. 1989. Cation channels by subunit III of the channel portion of the chloroplast H+-ATPase. FEBS Lett. 258:190–194

    Google Scholar 

  142. Schwiening, C.J., Kennedy, H.J., Thomas, R.C. 1993. Calcium hydrogen exchange by the plasma membrane Ca-ATPase of voltage-clamped snail neurons. Proc. R. Soc. Lond. B. 253: 285–289

    Google Scholar 

  143. Shi, L.-B., Brown, D., Verkman, A.S. 1990. Water, proton, and urea transport in toad bladder endosomes that contain the vasopressin-sensitive water channel. J. Gen. Physiol. 95:941–960

    Google Scholar 

  144. Silver, M.R., DeCoursey, T.E. 1990. Intrinsic gating of inward rectifier in bovine pulmonary artery endothelial cells in the presence or absence of internal Mg2+. J. Gen. Physiol. 96:109–133

    Google Scholar 

  145. Simchowitz, L., Roos, A. 1985. Regulation of intracellular pH in human neutrophils. J. Gen. Physiol. 85:443–470

    Google Scholar 

  146. Standen, N.B., Stanfield, P.R. 1978. Inward rectification in skeletal muscle: a blocking particle model. Pfluegers Arch. 378:173–176

    Google Scholar 

  147. Stearn, A.E., Eyring, H. 1937. The deduction of reaction mechanisms from the theory of absolute rates. J. Chem. Phys. 5:113–124

    Google Scholar 

  148. Thomas, R.C. 1979. Recovery of pHi in snail neurones exposed to high external potassium. J. Physiol. 296:77P

    Google Scholar 

  149. Thomas, R.C. 1988. Changes in the surface pH of voltageclamped snail neurones apparently caused by H+ fluxes through a channel. J. Physiol. 398:313–327

    Google Scholar 

  150. Thomas, R.C. 1989. Proton channels in snail neurones: does calcium entry mimic the effects of proton influx? Ann. NY Acad. Sci. 574:287–293

    Google Scholar 

  151. Thomas, R.C., Meech, R.W. 1982. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299:826–828

    Google Scholar 

  152. Vandenberg, C.A. 1987. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc. Natl. Acad. Sci. USA 84:2560–2564

    Google Scholar 

  153. Wagner, R., Apley, E.C., Hanke, W. 1989. Single channel H+ currents through reconstituted chloroplast ATP synthase CF0CF1. EMBO J. 8:2827–2834

    Google Scholar 

  154. Zeidel, M.L., Nielsen, S., Smith, B.L., Ambudkar, S.V., Maunsbach, A.B., Agre, P. 1994. Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin CHIP in proteoliposomes. Biochemistry (in press)

  155. Zundel, G. 1992. Hydrogen-bonded systems with large proton polarizability due to collective proton motion as pathways of protons in biological systems. In: Electron and Proton Transfer in Chemistry and Biology. A. Müller, H. Ratajczak, W. Junge, and E. Diemann, editors. pp. 313–327. Elsevier, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We appreciate the generous sharing of ideas and preprints by other protonophiles. Particularly helpful were discussions with Peter C. Jordan, Wolfgang Junge, James D. Lear, John F. Nagle and others at the 1994 Gordon Conference on Protons and Membrane Reactions, and Peter S. Aronson, James E. Hall, Vladislav S. Markin, Stuart G. McLaughlin, Robert F. Rakowski, Louis Simchowitz, and Clifford L. Slayman. We thank Robert Meech for providing unlettered original figures. This work was supported by a Grant-in-Aid from the American Heart Association with funds contributed by the American Heart Association of Metropolitan Chicago (to T.E.D.). Some toxins were kindly provided by Dr. Susan Gregory and Randy Rader of the Searle Pharmaceutical Company. We appreciate the careful lettering of figures by Donald S. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeCoursey, T.E., Cherny, V.V. Voltage-activated hydrogen ion currents. J. Membarin Biol. 141, 203–223 (1994). https://doi.org/10.1007/BF00235130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235130

Key words

Navigation