Skip to main content
Log in

Potential Bactericidal Activity of Silver Nanoparticles

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In recent times, nanotechnology has drawn the attention of the scientific community because of the wide variety of applications that can be done with it, from food packaging to targeted drug delivery; the use of nanoparticles has been a breakthrough in science that has now reached the market. Silver nanoparticles (Ag NPs) have unique properties due to the oscillation of electrons in the superficial plasmon. These nanostructures have been used in different applications in the area of nanomedicine, such as: targeted drug delivery, sensing and imaging, anti-fungal, anti-cancerous and biosensors. It has become evident that pathogenic bacteria are resisting antibiotics such as Penicillin becoming one of the most worrying topics in the world. People in the science community fear the day when we no longer can use these antibiotics, because the resistance of bacteria became too great, leaving us defenceless against any type of pathogens and possibly causing a catastrophe. However, we theorize that the possible solution to this problem could be the use of silver nanoparticles, given that there has not been a documented bacterial adaptation strategy that could give them resistance to Ag NPs. The purpose of this study is to find how the water-stable silver nanoparticles interact with different strains, including Gram negative and Gram-positive bacteria. The main objectives of our research were to synthesize and characterize water stable silver nanoparticles and test their potential bactericidal activity. We synthesized our Ag NPs using sodium citrate as a reducing agent. After synthesizing the nanoparticles, their optical properties were characterized by Ultraviolet-visible spectroscopy (UV-Vis); crystalline structure was evaluated with Electron Diffraction (ED) and X-Ray Diffraction (XRD); morphology was assessed by High Resolution Transmission Electron Microscopy (HR-TEM). Fourier Transform Infra-Red Spectroscopy (FT-IR) was used to indicate functional groups involved in the nanoparticle capping. Cultures were prepared with agarose and inoculated with the following bacterial strains: Bacillus cereus (Gram +), Micrococcus luteus (Gram +), Staphylococcus aureus (Gram +), Escherichia coli (Gram -), Citrobacter freundii (Gram -), Enterobacter aerogenes (Gram -), Klebsiella pneumoniae (Gram -), Proteus mirabilis (Gram -), Proteus vulgaris (Gram -) and Serratia marcescens (Gram -). Preliminary tests showed an inhibition diameter that surpassed 1.0 cm in all bacterial strains. We expect our Ag NPs to have a potential antibacterial activity towards all types of bacteria, due to oxidation of silver (Ag0 to Ag+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Saber, E. A. Alwaleed, K. Ebnalwaled, A. Sayed, and W. Salem, EJBAS 4(4), 249–255 (2017).

    Google Scholar 

  2. L. Duffy, M. J. Osmond-Mcleod, J. Judy, and T. King, Food Control, 92, 293–300 (2018).

    Article  CAS  Google Scholar 

  3. S. Riaz, M. Ashraf, T. Hussain, M.T. Hussain, and A. Younus, Colloids and Surfaces A, 581 (2019).

  4. Y. Zou, Z. Guo, L. Ye, Y. Cui, X. Wang, L. Zhao, and K. Yu, J. Alloys Compd., 803, 527–537 (2019).

    Article  CAS  Google Scholar 

  5. A. Becaro, C. M. Jonsson, F. C. Puti, M. C. Siqueira, L. H. Mattoso, D. S. Correa, and M. D. Ferreira, Environmental Nanotechnology, Monitoring & Management, 3, 22–29 (2015).

    Article  Google Scholar 

  6. A. K. Keshari, R. Srivastava, P. Singh, V. B. Yadav, and G. Nath, J-AIM (2018).

    Google Scholar 

  7. M. Shivakumar, G. Krishnamurthy, C. Ravikumar, and A. S. Bhatt, JSAMD, 4(2), 290–298 (2019).

    Google Scholar 

  8. B. Khodashenas, and H. R. Ghorbani, Arab. J. Chem, 12(8), 1823–1838 (2019).

    Article  CAS  Google Scholar 

  9. H. Cha, D. Lee, J. H. Yoon, and S. Yoon, J. Colloid Interface Sci., 464, 18–24 (2016).

    Article  CAS  Google Scholar 

  10. Y. Mao, P. Ding, Y. Wang, C. Ding, L. Wu, P. Zheng, X. Zhang, X. Li, L. Wang, Z. Sun, Environ Int., 131, (2019).

  11. M. F. Aldayel, J. King Saud Univ. Sci., 31(4), 1227–1234 (2019).

    Article  Google Scholar 

  12. E. A. González, N. Leiva, N. Vejar, M. Sancy, M. Gulppi, M.I. Azócar, G. Gomez, L. Tamayo, X. Zhou, G.E. Thompson. M. A. Páez, J. Mater. Res. Technol., 8(2), 1809–1818 (2019).

    Article  Google Scholar 

  13. N. Durán, M. Durán, M.B. de Jesús, A.B. Seabra, W. J. Fávaro, G. Nakazato, Nanomedicine, 12(3), 789–799 (2016).

    Article  Google Scholar 

  14. M. Behravan, A. H. Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, and A. Mirzapour, Int. J. Biol. Macromol., 124, 148–154 (2019).

    Article  CAS  Google Scholar 

  15. S. N. Nyamu, L. Ombaka, E. Masika, and M. Nganga, JOIN, 4(3), 86–94 (2019).

    CAS  Google Scholar 

  16. G. Suriati, M. Mariatti, and A. Azizan, IJAME, 10, 1920–1927 (2014).

    Article  CAS  Google Scholar 

  17. K. Ranoszek-Soliwoda, E. Tomaszewska, E. Socha, P. Krzyczmonik, A. Ignaczak, P. Orlowski, M. Krzyzowska, G. Celichowski, J. Grobelny, J. Nanoparticle Res., 19 (8) (2017).

    Google Scholar 

  18. A. Monshi, M. Foroughi and M. Monshi, WJNSE, 2(3), 154–160 (2012).

    Article  Google Scholar 

  19. B. Lee, M. J. Lee, S. J. Yun, K. Kim, I. H. Choi, and S. Park, Int. J. Nanomed., 14, 4801–4816 (2019).

    Article  CAS  Google Scholar 

  20. L. S. de Melo, A. S. Gomes, S. Saska, K. Nigoghossian, Y. Messaddeq, S.J. Ribeiro, and R. E. de Araujo, J. Fluoresc., 22(6), 1633–1638 (2012).

    Article  CAS  Google Scholar 

  21. A.M. Jones, S. Garg, D. He, A. N. Pham, and T. D. Waite, Environ. Sci. Technol., 45(4), 1428–1434 (2011).

    Article  CAS  Google Scholar 

  22. D. He, C. J. Miller, and T. D. Waite, J. Catal., 317, 198–205 (2014).

    Article  CAS  Google Scholar 

  23. D. Wild, The immunoassay handbook, 4th ed. (Elsevier, Amsterdam, 2013), p. 945–962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia J. Bailón-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez, D.M., Merced Colón, J.A., García-Mercado, W. et al. Potential Bactericidal Activity of Silver Nanoparticles. MRS Advances 5, 975–984 (2020). https://doi.org/10.1557/adv.2020.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.116

Navigation