Skip to main content
Log in

Application of Zinpyr-1 for the investigation of zinc signals in Escherichia coli

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Changes of the pico- to nanomolar concentration of free intracellular Zn2+ are part of the signal transduction in mammalian cells. These zinc signals regulate the enzymatic activity of target proteins such as protein tyrosine phosphatases. For Escherichia coli, previous studies have reported diverging concentrations from femto- to picomolar, raising the question if Zn2+ could also have a function in bacterial signaling. This manuscript explores the use of the low molecular weight fluorescent probe Zinpyr-1 in E. coli. The probe detects free Zn2+ in these bacteria. Comparable to mammalian cells, other metal ions, especially Hg2+ and Cd2+, interfere with the detection of Zn2+. Moreover, experiments in E. coli were particularly prone to artifacts based on cellular autofluorescence, necessitating corrections that are not required in mammalian cells. Based on measurements in lysates of E. coli and the mammalian cell line Jurkat, similar values between 0.1 and 0.2 nM free Zn2+ were found. For E. coli, this corresponds to less than one free zinc ion per cell. Moreover, phosphatase inhibition by Zn2+ was only observed in Jurkat, but not E. coli. This excludes a function for zinc signals as a regulator of bacterial phosphatases. Still, changes in the free Zn2+ concentration were observed in response to elevated extracellular Zn2+ and pH, or to addition of the detergent NP-40, suggesting that other processes could be controlled by the free intracellular Zn2+ concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bozym RA, Thompson RB, Stoddard AK, Fierke CA (2006) Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1:103–111

    Article  PubMed  CAS  Google Scholar 

  • Burdette SC, Walkup GK, Spingler B, Tsien RY, Lippard SJ (2001) Fluorescent sensors for Zn(2+) based on a fluorescein platform: synthesis, properties and intracellular distribution. J Am Chem Soc 123:7831–7841

    Article  PubMed  CAS  Google Scholar 

  • Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317

    Article  PubMed  CAS  Google Scholar 

  • Cozzone AJ, Grangeasse C, Doublet P, Duclos B (2004) Protein phosphorylation on tyrosine in bacteria. Arch Microbiol 181:171–181

    Article  PubMed  CAS  Google Scholar 

  • Decaria L, Bertini I, Williams RJ (2010) Zinc proteomes, phylogenetics and evolution. Metallomics 2:706–709

    Article  PubMed  CAS  Google Scholar 

  • Deutscher J, Saier MH Jr (2005) Ser/Thr/Tyr protein phosphorylation in bacteria—for long time neglected, now well established. J Mol Microbiol Biotechnol 9:125–131

    Article  PubMed  CAS  Google Scholar 

  • Gangola P, Rosen BP (1987) Maintenance of intracellular calcium in Escherichia coli. J Biol Chem 262:12570–12574

    PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Haase H, Rink L (2009a) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152

    Article  PubMed  CAS  Google Scholar 

  • Haase H, Rink L (2009b) Immunotoxicology of cadmium. In: Parvau RG (ed) Cadmium in the environment. Nova publishers, New York

    Google Scholar 

  • Haase H, Hebel S, Engelhardt G, Rink L (2006) Flow cytometric measurement of labile zinc in peripheral blood mononuclear cells. Anal Biochem 352:222–230

    Article  PubMed  CAS  Google Scholar 

  • Haase H, Hebel S, Engelhardt G, Rink L (2009) Zinc ions cause the thimerosal-induced signal of fluorescent calcium probes in lymphocytes. Cell Calcium 45:185–191

    Article  PubMed  CAS  Google Scholar 

  • Haase H, Ober-Blobaum JL, Engelhardt G, Hebel S, Rink L (2010) Cadmium ions induce monocytic production of tumor necrosis factor-alpha by inhibiting mitogen activated protein kinase dephosphorylation. Toxicol Lett 198:152–158

    Article  PubMed  CAS  Google Scholar 

  • Haase H, Engelhardt G, Hebel S, Rink L (2011) Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species. Toxicol Appl Pharmacol 250:78–86

    Article  PubMed  CAS  Google Scholar 

  • Kobir A, Shi L, Boskovic A, Grangeasse C, Franjevic D, Mijakovic I (2011) Protein phosphorylation in bacterial signal transduction. Biochim Biophys Acta 1810:989–994

    Article  PubMed  CAS  Google Scholar 

  • Krezel A, Maret W (2006) Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem 11:1049–1062

    Article  PubMed  CAS  Google Scholar 

  • Kubitschek HE, Friske JA (1986) Determination of bacterial cell volume with the coulter counter. J Bacteriol 168:1466–1467

    PubMed  CAS  Google Scholar 

  • Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24:411–418

    Article  PubMed  CAS  Google Scholar 

  • Maret W (2012) Human zinc biochemistry. In: Rink L (ed) Zinc in human health. IOS press, Amsterdam, pp 45–62

    Google Scholar 

  • Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  PubMed  CAS  Google Scholar 

  • Rosenbluth MJ, Lam WA, Fletcher DA (2006) Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J 90:2994–3003

    Article  PubMed  CAS  Google Scholar 

  • Thompson RB (2005) Studying zinc biology with fluorescence: ain’t we got fun? Curr Opin Chem Biol 9:526–532

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Hurst TK, Thompson RB, Fierke CA (2011) Genetically encoded ratiometric biosensors to measure intracellular exchangeable zinc in Escherichia coli. J Biomed Opt 16:087011

    Article  PubMed  Google Scholar 

  • Wang D, Hosteen O, Fierke CA (2012) ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. J Inorg Biochem 111:173–181

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Rink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haase, H., Hebel, S., Engelhardt, G. et al. Application of Zinpyr-1 for the investigation of zinc signals in Escherichia coli . Biometals 26, 167–177 (2013). https://doi.org/10.1007/s10534-012-9604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9604-0

Keywords

Navigation