Skip to main content
Log in

Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altenhoff AM, Dessimoz C (2009) Phylogenetic and functional assessment of orthologs inference projects and methods. PLoS Comput Biol 5(1):e1000262. doi:10.1371/journal.pcbi.1000262

  • Aravind L, Anantharaman V (2003) HutC/FarR-like bacterial transcription factors of the GntR family contain a small molecule-binding domain of the chorismate lyase fold. FEMS Microbiol Lett 222(1):17–23. doi:10.1016/S0378-1097(03)00242-8

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29(2):231–262. doi:10.1016/j.femsre.2004.12.008

    PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Cavet JS, Dennison C, Graham AI, Harvie DR, Robinson NJ (2007) NMR structural analysis of cadmium sensing by winged helix repressor CmtR. J Biol Chem 282(41):30181–30188. doi:10.1074/jbc.M701119200

    Article  PubMed  CAS  Google Scholar 

  • Baumbach J, Brinkrolf K, Czaja LF, Rahmann S, Tauch A (2006) CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. BMC Genomics 7:24. doi:10.1186/1471-2164-7-24

    Article  PubMed  Google Scholar 

  • Baumbach J, Rahmann S, Tauch A (2009a) Reliable transfer of transcriptional gene regulatory networks between taxonomically related organisms. BMC Syst Biol 3:8. doi:10.1186/1752-0509-3-8

    Article  PubMed  Google Scholar 

  • Baumbach J, Wittkop T, Kleindt CK, Tauch A (2009b) Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat Protoc 4(6):992–1005. doi:10.1038/nprot.2009.81

    Article  PubMed  Google Scholar 

  • Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinform 10:154. doi:10.1186/1471-2105-10-154

    Article  Google Scholar 

  • Bouchal P, Zdrahal Z, Helanova S, Janiczek O, Hallberg KB, Mandl M (2006) Proteomic and bioinformatic analysis of iron- and sulfur-oxidizing Acidithiobacillus ferrooxidans using immobilized pH gradients and mass spectrometry. Proteomics 6(15):4278–4285. doi:10.1002/pmic.200500719

    Article  PubMed  CAS  Google Scholar 

  • Bradley TM, Hidalgo E, Leautaud V, Ding H, Demple B (1997) Cysteine-to-alanine replacements in the Escherichia coli SoxR protein and the role of the [2Fe-2S] centers in transcriptional activation. Nucleic Acids Res 25(8):1469–1475. doi:10.1093/nar/25.8.1469

    Article  PubMed  CAS  Google Scholar 

  • Brinkman AB, Ettema TJ, de Vos WM, van der Oost J (2003) The Lrp family of transcriptional regulators. Mol Microbiol 48(2):287–294. doi:10.1155/2010/750457

    Article  PubMed  CAS  Google Scholar 

  • Brocklehurst KR, Megit SJ, Morby AP (2003) Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Biochem Biophys Res Commun 308(2):234–239. doi:10.1016/S0006-291X(03)01366-4

    Article  PubMed  CAS  Google Scholar 

  • Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27(2–3):145–163. doi:10.1016/S0168-6445(03)00051-2

    Article  PubMed  CAS  Google Scholar 

  • Brune I, Brinkrolf K, Kalinowski J, Puhler A, Tauch A (2005) The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6(1):86. doi:10.1186/1471-2164-6-86

    Article  PubMed  Google Scholar 

  • Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27(2–3):131–143. doi:10.1016/S0168-6445(03)00054-8

    Article  PubMed  CAS  Google Scholar 

  • Butcher BG, Rawlings DE (2002) The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148(Pt 12):3983–3992

    PubMed  CAS  Google Scholar 

  • Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66(5):1826–1833

    Article  PubMed  CAS  Google Scholar 

  • Calvo JM, Matthews RG (1994) The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58(3):466–490

    PubMed  CAS  Google Scholar 

  • Campbell DR, Chapman KE, Waldron KJ, Tottey S, Kendall S, Cavallaro G, Andreini C, Hinds J, Stoker NG, Robinson NJ, Cavet JS (2007) Mycobacterial cells have dual nickel-cobalt sensors: sequence relationships and metal sites of metal-responsive repressors are not congruent. J Biol Chem 282(44):32298–32310. doi:10.1074/jbc.M703451200

    Article  PubMed  CAS  Google Scholar 

  • Case RJ, Labbate M, Kjelleberg S (2008) AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2(4):345–349. doi:10.1038/ismej.2008.13

    Article  PubMed  CAS  Google Scholar 

  • Champier L, Duarte V, Michaud-Soret I, Coves J (2004) Characterization of the MerD protein from Ralstonia metallidurans CH34: a possible role in bacterial mercury resistance by switching off the induction of the mer operon. Mol Microbiol 52(5):1475–1485. doi:10.1111/j.1365-2958.2004.04071.x

    Article  PubMed  CAS  Google Scholar 

  • Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301(5638):1383–1387. doi:10.1126/science.1085950

    Article  PubMed  CAS  Google Scholar 

  • Charoensawan V, Wilson D, Teichmann SA (2010) Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Res 38(21):7364–7377. doi:10.1093/nar/gkq617

    Article  PubMed  CAS  Google Scholar 

  • Coles M, Djuranovic S, Soding J, Frickey T, Koretke K, Truffault V, Martin J, Lupas AN (2005) AbrB-like transcription factors assume a swapped hairpin fold that is evolutionarily related to double-psi beta barrels. Structure 13(6):919–928. doi:10.1016/j.str.2005.03.017

    Article  PubMed  CAS  Google Scholar 

  • Coram NJ, van Zyl LJ, Rawlings DE (2005) Isolation, sequence analysis, and comparison of two plasmids (28 and 29 kilobases) from the biomining bacterium Leptospirillum ferrooxidans ATCC 49879. Appl Environ Microbiol 71(11):7515–7522. doi:10.1128/AEM.71.11.7515-7522.2005

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. doi:10.1101/gr.849004

    Article  PubMed  CAS  Google Scholar 

  • Dietrich LE, Teal TK, Price-Whelan A, Newman DK (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321(5893):1203–1206. doi:10.1126/science.1160619

    Article  PubMed  CAS  Google Scholar 

  • Dodd IB, Egan JB (1990) Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18(17):5019–5026

    Article  PubMed  CAS  Google Scholar 

  • Dong TC, Cutting SM, Lewis RJ (2004) DNA-binding studies on the Bacillus subtilis transcriptional regulator and AbrB homologue, SpoVT. FEMS Microbiol Lett 233(2):247–256. doi:10.1016/j.femsle.2004.02.013

    Article  PubMed  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149(Pt 8):1959–1970

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez AD, Espinosa V, Vasconcelos AT, Perez-Rueda E, Collado-Vides J (2005) TRACTOR_DB: a database of regulatory networks in gamma-proteobacterial genomes. Nucleic Acids Res 33(Database issue):D98–D102. doi:10.1093/nar/gki054

    Article  PubMed  CAS  Google Scholar 

  • Gray KM, Garey JR (2001) The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology 147(Pt 8):2379–2387

    PubMed  CAS  Google Scholar 

  • Grunden AM, Ray RM, Rosentel JK, Healy FG, Shanmugam KT (1996) Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J Bacteriol 178(3):735–744

    PubMed  CAS  Google Scholar 

  • Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84

    Article  PubMed  CAS  Google Scholar 

  • Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2004) Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52(3):847–860. doi:10.1111/j.1365-2958.2004.04023.x

    Article  PubMed  CAS  Google Scholar 

  • Hulsen T, de Vlieg J, Leunissen JA, Groenen PM (2006) Testing statistical significance scores of sequence comparison methods with structure similarity. BMC Bioinform 12(7):444. doi:10.1186/1471-2105-7-444

    Google Scholar 

  • Hobman JL, Wilkie J, Brown NL (2005) A design for life: prokaryotic metal-binding MerR family regulators. Biometals 18(4):429–436. doi:10.1007/s10534-005-3717-7

    Article  PubMed  CAS  Google Scholar 

  • Inoue C, Sugawara K, Shiratori T, Kusano T, Kitagawa Y (1989) Nucleotide sequence of the Thiobacillus ferrooxidans chromosomal gene encoding mercuric reductase. Gene 84(1):47–54. doi:10.1016/0378-1119(89)90138-8

    Article  PubMed  CAS  Google Scholar 

  • Inoue C, Sugawara K, Kusano T (1991) The merR regulatory gene in Thiobacillus ferrooxidans is spaced apart from the mer structural genes. Mol Microbiol 5(11):2707–2718

    Article  PubMed  CAS  Google Scholar 

  • Inoue C, Kusano T, Silver S (1996) Mercuric ion uptake by Escherichia coli cells producing Thiobacillus ferrooxidans merC. Biosci Biotechnol Biochem 60(8):1289–1292

    Article  PubMed  CAS  Google Scholar 

  • Jochmann N, Kurze AK, Czaja LF, Brinkrolf K, Brune I, Huser AT, Hansmeier N, Puhler A, Borovok I, Tauch A (2009) Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Microbiology 155(Pt 5):1459–1477. doi:10.1099/mic.0.025841-0

    Article  PubMed  CAS  Google Scholar 

  • Kusano T, Ji GY, Inoue C, Silver S (1990) Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans merC gene cloned in Escherichia coli. J Bacteriol 172(5):2688–2692

    PubMed  CAS  Google Scholar 

  • Lerat E, Moran NA (2004) The evolutionary history of quorum-sensing systems in bacteria. Mol Biol Evol 21(5):903–913. doi:10.1093/molbev/msh097

    Article  PubMed  CAS  Google Scholar 

  • Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63(3):507–522.

    PubMed  CAS  Google Scholar 

  • Liebert CA, Watson AL, Summers AO (2000) The quality of merC, a module of the mer mosaic. J Mol Evol 51(6):607–622. doi:10.1007/s002390010124

    PubMed  CAS  Google Scholar 

  • Little JW, Mount DW, Yanisch-Perron CR (1981) Purified lexA protein is a repressor of the recA and lexA genes. Proc Natl Acad Sci USA 78(7):4199–4203

    Article  PubMed  CAS  Google Scholar 

  • Lo I, Denef VJ, Verberkmoes NC, Shah MB, Goltsman D, DiBartolo G, Tyson GW, Allen EE, Ram RJ, Detter JC, Richardson P, Thelen MP, Hettich RL, Banfield JF (2007) Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446(7135):537–541. doi:10.1038/nature05624

    Article  PubMed  CAS  Google Scholar 

  • Lozada-Chavez I, Janga SC, Collado-Vides J (2006) Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res 34(12):3434–3445

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, Koonin EV (1999) Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res 9(7):608–628

    PubMed  CAS  Google Scholar 

  • Mandal S, Chatterjee S, Dam B, Roy P, Das Gupta SK (2007) The dimeric repressor SoxR binds cooperatively to the promoter(s) regulating expression of the sulfur oxidation (sox) operon of Pseudaminobacter salicylatoxidans KCT001. Microbiology 153(Pt 1):80–91. doi:10.1099/mic.0.29197-0

    Article  PubMed  CAS  Google Scholar 

  • Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A (2003) GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31(8):2187–2195. doi:10.1093/nar/gkg312

    Article  PubMed  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. doi:10.1146/annurev.micro.55.1.165

    Article  PubMed  CAS  Google Scholar 

  • Minezaki Y, Homma K, Nishikawa K (2005) Genome-wide survey of transcription factors in prokaryotes reveals many bacteria-specific families not found in archaea. DNA Res 12(5):269–280. doi:10.1093/dnares/dsi016

    Article  PubMed  CAS  Google Scholar 

  • Montgomerie S, Sundararaj S, Gallin WJ, Wishart DS (2006) Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinform 7:301. doi:10.1186/1471-2105-7-301

    Article  Google Scholar 

  • Moreno-Campuzano S, Janga SC, Perez-Rueda E (2006) Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes—a genomic approach. BMC Genomics 7:147. doi:10.1186/1471-2164-7-147

    Article  PubMed  Google Scholar 

  • Mukhopadhyay D, Yu HR, Nucifora G, Misra TK (1991) Purification and functional characterization of MerD. A coregulator of the mercury resistance operon in gram-negative bacteria. J Biol Chem 266(28):18538–18542

    PubMed  CAS  Google Scholar 

  • Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, Powell S, von Mering C, Doerks T, Jensen LJ, Bork P (2010) eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Res 38(Database):D190–D195. doi:10.1093/nar/gkp951

    Article  PubMed  CAS  Google Scholar 

  • Navarro CA, Orellana LH, Mauriaca C, Jerez CA (2009) Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Appl Environ Microbiol 75(19):6102–6109. doi:10.1128/AEM.00308-09

    Article  PubMed  CAS  Google Scholar 

  • Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178(20):5853–5859

    PubMed  CAS  Google Scholar 

  • Nucifora G, Silver S, Misra TK (1989) Down regulation of the mercury resistance operon by the most promoter-distal gene merD. Mol Gen Genet 220(1):69–72

    Article  PubMed  CAS  Google Scholar 

  • Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69(4):1936–1943

    Article  PubMed  CAS  Google Scholar 

  • Ordonez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71(10):6206–6215. doi:10.1128/AEM.71.10.6206-6215.2005

    Article  PubMed  CAS  Google Scholar 

  • Ordonez E, Thiyagarajan S, Cook JD, Stemmler TL, Gil JA, Mateos LM, Rosen BP (2008) Evolution of metal(loid) binding sites in transcriptional regulators. J Biol Chem 283(37):25706–25714. doi:10.1074/jbc.M803209200

    Article  PubMed  CAS  Google Scholar 

  • Paulsen IT, Banerjei L, Myers GS, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299(5615):2071–2074. doi:10.1126/science.1080613

    Article  PubMed  CAS  Google Scholar 

  • Peeters E, Charlier D (2010) The Lrp family of transcription regulators in archaea. Archaea 2010:750457. doi:10.1155/2010/750457

  • Pennella MA, Giedroc DP (2005) Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators. Biometals 18(4):413–428. doi:10.1007/s10534-005-3716-8

    Article  PubMed  CAS  Google Scholar 

  • Perez-Rueda E, Collado-Vides J (2000) The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res 28(8):1838–1847. doi:10.1016/j.compbiolchem.2004.09.004

    Article  PubMed  CAS  Google Scholar 

  • Perez-Rueda E, Janga SC (2010) Identification and genomic analysis of transcription factors in archaeal genomes exemplifies their functional architecture and evolutionary origin. Mol Biol Evol 27(6):1449–1459. doi:10.1093/molbev/msq033

    Article  PubMed  CAS  Google Scholar 

  • Perez-Rueda E, Collado-Vides J, Segovia L (2004) Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. Comput Biol Chem 28(5–6):341–350

    Article  PubMed  CAS  Google Scholar 

  • Permina EA, Kazakov AE, Kalinina OV, Gelfand MS (2006) Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol 6:49. doi:10.1186/1471-2180-6-49

    Article  PubMed  CAS  Google Scholar 

  • Pizarro J, Jedlicki E, Orellana O, Romero J, Espejo RT (1996) Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appl Environ Microbiol 62(4):1323–1328

    PubMed  CAS  Google Scholar 

  • Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 3(2):255–264

    PubMed  CAS  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2007) Orthologous transcription factors in bacteria have different functions and regulate different genes. PLoS Comput Biol 3(9):1739–1750. doi:10.1371/journal.pcbi.0030175

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Fu HL, Ye J, Bencze KZ, Stemmler TL, Rawlings DE, Rosen BP (2007) Convergent evolution of a new arsenic binding site in the ArsR/SmtB family of metalloregulators. J Biol Chem 282(47):34346–34355. doi:10.1074/jbc.M706565200

    Article  PubMed  CAS  Google Scholar 

  • Quatrini R, Lefimil C, Holmes DS, Jedlicki E (2005) The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. Microbiology 151(Pt 6):2005–2015. doi:10.1099/mic.0.27581-0

    Article  PubMed  CAS  Google Scholar 

  • Quatrini R, Appia-ayme C, Denis Y, Ratouchniak J, Veloso F, Valdes J, Lefimil C, Silver S, Roberto F, Orellana O, Denizot F, Jedlicki E, Holmes DS, Bonnefoy V (2006) Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Anglais 83:263–272

    CAS  Google Scholar 

  • Quatrini R, Lefimil C, Veloso FA, Pedroso I, Holmes DS, Jedlicki E (2007) Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Res 35(7):2153–2166. doi:10.1093/nar/gkm068

    Article  PubMed  CAS  Google Scholar 

  • Ramirez P, Guiliani N, Valenzuela L, Beard S, Jerez CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70(8):4491–4498. doi:10.1128/AEM.70.8.4491-4498.2004

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91. doi:10.1146/annurev.micro.56.012302.161052

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153(Pt 2):315–324. doi:10.1099/mic.0.2006/001206-0

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE, Kusano T (1994) Molecular genetics of Thiobacillus ferrooxidans. Microbiol Rev 58(1):39–55

    PubMed  CAS  Google Scholar 

  • Rawlings DE, Tietze E (2001) Comparative biology of IncQ and IncQ-like plasmids. Microbiol Mol Biol Rev 65(4):481–496. doi:10.1128/MMBR.65.4.481-496.2001

  • Rensing C (2005) Form and function in metal-dependent transcriptional regulation: dawn of the enlightenment. J Bacteriol 187(12):3909–3912. doi:10.1128/JB.187.12.3909-3912.2005

    Article  PubMed  CAS  Google Scholar 

  • Rigali S, Derouaux A, Giannotta F, Dusart J (2002) Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277(15):12507–12515. doi:10.1074/jbc.M110968200

    Article  PubMed  CAS  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review, Part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63(3):239–248. doi:10.1007/s00253-003-1448-7

    Article  PubMed  CAS  Google Scholar 

  • Saha RP, Chakrabarti P (2006) Molecular modeling and characterization of Vibrio cholerae transcription regulator HlyU. BMC Struct Biol 6:24. doi:10.1186/1472-6807-6-24

    Article  PubMed  Google Scholar 

  • Salgado H, Gama-Castro S, Martinez-Antonio A, Diaz-Peredo E, Sanchez-Solano F, Peralta-Gil M, Garcia-Alonso D, Jimenez-Jacinto V, Santos-Zavaleta A, Bonavides-Martinez C, Collado-Vides J (2004) RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res 32 (Database issue):D303–D306. doi:10.1093/nar/gkh140

  • Shi W, Wu J, Rosen BP (1994) Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269(31):19826–19829

    PubMed  CAS  Google Scholar 

  • Soulere L, Guiliani N, Queneau Y, Jerez CA, Doutheau A (2008) Molecular insights into quorum sensing in Acidithiobacillus ferrooxidans bacteria via molecular modelling of the transcriptional regulator AfeR and of the binding mode of long-chain acyl homoserine lactones. J Mol Model 14(7):599–606. doi:10.1007/s00894-008-0315-y

    Article  PubMed  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406(6799):959–964. doi:10.1038/35023079

    Article  PubMed  CAS  Google Scholar 

  • Studholme DJ, Dixon R (2003) Domain architectures of sigma54-dependent transcriptional activators. J Bacteriol 185(6):1757–1767. doi10.1128/JB.185.6.1757-1767.2003

    Article  PubMed  CAS  Google Scholar 

  • Studholme DJ, Pau RN (2003) A DNA element recognised by the molybdenum-responsive transcription factor ModE is conserved in Proteobacteria, green sulphur bacteria and Archaea. BMC Microbiol 3:24. doi:10.1186/1471-2180-3-24

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinform Chapter 2(Unit 2):3. doi:10.1002/0471250953.bi0203s00

  • Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, Hunt DF, Jerez CA (2006) Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 24(2):197–211. doi:10.1016/j.biotechadv.2005.09.004

    Article  PubMed  CAS  Google Scholar 

  • Velasco A, Acebo P, Flores N, Perera J (1999) The mer operon of the acidophilic bacterium Thiobacillus T3.2 diverges from its Thiobacillus ferrooxidans counterpart. Extremophiles 3(1):35–43

    Article  PubMed  CAS  Google Scholar 

  • Vera M, Pagliai F, Guiliani N, Jerez CA (2008) The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates. Appl Environ Microbiol 74(6):1829–1835. doi:10.1128/AEM.02101-07

    Article  PubMed  CAS  Google Scholar 

  • von Bodman SB, Ball JK, Faini MA, Herrera CM, Minogue TD, Urbanowski ML, Stevens AM (2003) The quorum sensing negative regulators EsaR and ExpR(Ecc), homologues within the LuxR family, retain the ability to function as activators of transcription. J Bacteriol 185(23):7001–7007

    Article  Google Scholar 

  • Wang Y, Hemmingsen L, Giedroc DP (2005) Structural and functional characterization of Mycobacterium tuberculosis CmtR, a PbII/CdII-sensing SmtB/ArsR metalloregulatory repressor. Biochemistry 44(25):8976–8988. doi:10.1021/bi050094v

    Article  PubMed  CAS  Google Scholar 

  • Whitworth DE, Cock PJ (2009) Evolution of prokaryotic two-component systems: insights from comparative genomics. Amino Acids 37(3):459–466. doi:10.1007/s00726-009-0259-2

    Article  PubMed  CAS  Google Scholar 

  • Wu XL, Miao B, Han JA, Hu Q, Zeng J, Liu YD, Qiu GZ (2010) Purification and enzymatic properties of arsenic resistance protein ArsH from heterogeneous expression in E. coli BL21. Trans Nonferr Metal Soc 20(10):1987–1992. doi:10.1016/S1003-6326(09)60406-4

    Article  CAS  Google Scholar 

  • Xu C, Shi W, Rosen BP (1996) The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J Biol Chem 271(5):2427–2432

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Saier MH Jr (1988) Positive and negative regulators for glucitol (gut) operon expression in Escherichia coli. J Mol Biol 203(3):569–583. doi:10.1016/0022-2836(88)90193-3

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Leong HW (2010) Bidirectional best hit r-window gene clusters. BMC Bioinform 11(Suppl 1):S63. doi:10.1186/1471-2105-11-S1-S63

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondef D04I1257 (AM), Fondecyt 1090211 (VC), 1110427 (MG) and FONDAP-15090007(VC, AM and MG). CH was supported by a doctoral fellowship from Conicyt, a Dr. A. Stekel fellowship and a Postdoctoral grant Fondecyt 311019. The authors thank Marcel Spehr, Carito Vargas, Alvaro Graves and Nicolas Loira for their invaluable efforts on making to work the local GenDB installation. We also thank Burkhard Kinke and Alexander Goesmann at Bielefeld University; they were very helpful every time we reached them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Cambiazo.

Additional information

C. Hödar and P. Moreno contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10534_2011_9484_MOESM1_ESM.pdf

Flowchart of transcription factor annotation procedure showing the different steps of the annotation procedure employed to obtain the repertoire of A. ferrooxidans TFs (PDF 124 kb)

10534_2011_9484_MOESM2_ESM.xls

The repertoire of candidate transcription factors. This file contains data of the 119 TFs obtained by our automatic annotation procedure. For each protein sequence (Gene Code column) we searched for several attributes in order to classify the protein as a transcription factor (see Methods). The last column contains the amino acid sequence used in blast and domain analyses (XLS 117 kb)

10534_2011_9484_MOESM3_ESM.pdf

Transcription factor families. After manual curation of data obtained by automatic annotation, 87 sequences were assigned to TFs families (PDF 525 kb)

10534_2011_9484_MOESM4_ESM.xls

Conservation of A. ferrooxidans TFs in prokaryotic genomes. Each column corresponds to an A. ferrooxidans TF and each row to a predicted proteome from 957 microorganisms classified into phyla. Numbers 1 or 0 indicate the presence or absence of orthologs of A. ferrooxidans TFs in each proteome after BBH procedure (XLS 629 kb)

10534_2011_9484_MOESM5_ESM.pdf

Multiple alignments of A. ferooxidans MerR transcriptional regulators. Sequences that had best BLASTp hits to predicted members of A. ferrooxidans MerR family were aligned using ClustalW. Identical residues are shaded in black and similar residues in grey. Black boxes represent the predicted HTH DNA-binding domain of A. ferrooxidans TFs. Secondary structure elements are represented above the sequences. Residues that represent potential amino acids involved in metal coordination are indicated in an orange box. Black asterisk, conserved Tyr residue within α2-helix; green asterisk, Ser76 (PDF 434 kb)

10534_2011_9484_MOESM6_ESM.pdf

Multiple alignments of AFE_2859 orthologs. Genes that were identified as orthologs of AFE_2859 were aligned using ClustalW. At the top of the image is shown the predicted secondary structure of AFE_2859, with α-helices in red and β-strands in blue. Black box represents the HTH DNA binding domain and orange box the MBD described for AFE_2859 protein. Aligned residues present in more than 60% of the sequences were shaded. Black and red asterisks indicate A. ferrooxidans ATCC 23270 and ATCC 53993, respectively (PDF 11907 kb)

10534_2011_9484_MOESM7_ESM.jpg

Phylogenetic reconstruction of AFE_2859 orthologs. The image shows the bootstrap consensus tree inferred from the alignment of AFE_2859 orthologs using Neighbor joining procedure. Three groups can be identified based on the number of cysteine residues present in the putative MBD of the orthologs. AFE_2859 (arrowhead) are more closely related to orthologs with three cysteine residues in the MBD. Putative ArsR regulators, AFE_2641 and AFE_2369 are more closely related to AFE_2859 orthologs with one or two cysteines in the MBD (insets) (JPG 652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hödar, C., Moreno, P., di Genova, A. et al. Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators. Biometals 25, 75–93 (2012). https://doi.org/10.1007/s10534-011-9484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9484-8

Keywords

Navigation