Skip to main content

Advertisement

Log in

Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Metallic copper surfaces have strong antimicrobial properties and kill bacteria, such as Escherichia coli, within minutes in a process called contact killing. These bacteria are exposed to acute copper stress under dry conditions which is different from chronic copper stress in growing liquid cultures. Currently, the physiological changes of E. coli during the acute contact killing process are largely unknown. Here, a label-free, quantitative proteomic approach was employed to identify the differential proteome profiles of E. coli cells after sub-lethal and lethal exposure to dry metallic copper. Of the 509 proteins identified, 110 proteins were differentially expressed after sub-lethal exposure, whereas 136 proteins had significant differences in their abundance levels after lethal exposure to copper compared to unexposed cells. A total of 210 proteins were identified only in copper-responsive proteomes. Copper surface stress coincided with increased abundance of proteins involved in secondary metabolite biosynthesis, transport and catabolism, including efflux proteins and multidrug resistance proteins. Proteins involved in translation, ribosomal structure and biogenesis functions were down-regulated after contact to metallic copper. The set of changes invoked by copper surface-exposure was diverse without a clear connection to copper ion stress but was different from that caused by exposure to stainless steel. Oxidative posttranslational modifications of proteins were observed in cells exposed to copper but also from stainless steel surfaces. However, proteins from copper stressed cells exhibited a higher degree of oxidative proline and threonine modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bagwell CE, Hixson KK, Milliken CE, Lopez-Ferrer D, Weitz KK (2010) Proteomic and physiological responses of Kineococcus radiotolerans to copper. PLoS One 5:e12427

    Article  PubMed  Google Scholar 

  • Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Shillam R, Christian P, Elliott TSJ (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74:72–77

    Article  PubMed  CAS  Google Scholar 

  • Chillappagari S, Seubert A, Trip H, Kuipers OP, Marahiel MA, Miethke M (2010) Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. J Bacteriol 192:2512–2524

    Article  PubMed  CAS  Google Scholar 

  • Dukan S, Nystrom T (1998) Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev 12:3431–3441

    Article  PubMed  CAS  Google Scholar 

  • Dukan S, Nystrom T (1999) Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J Biol Chem 274:26027–26032

    Article  PubMed  CAS  Google Scholar 

  • Elguindi J, Wagner J, Rensing C (2009) Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J Appl Microbiol 106:1448–1455

    Article  PubMed  CAS  Google Scholar 

  • Elguindi J, Moffitt S, Hasman H, Andrade C, Raghavan S, Rensing C (2011) Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria. Appl Microbiol Biotechnol. doi:10.1007/s00253-010-2980-x

  • Espirito Santo C, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74:977–986

    Article  PubMed  Google Scholar 

  • Espirito Santo C, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77:794–802

    Article  PubMed  Google Scholar 

  • Fraser KR, Tuite NL, Bhagwat A, O’Byrne CP (2006) Global effects of homocysteine on transcription in Escherichia coli: induction of the gene for the major cold-shock protein, CspA. Microbiology 152:2221–2231

    Article  PubMed  CAS  Google Scholar 

  • Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FS (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623

    Article  PubMed  CAS  Google Scholar 

  • Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547

    Google Scholar 

  • Helbig K, Bleuel C, Krauss GJ, Nies DH (2008) Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol 190:5431–5438

    Article  PubMed  CAS  Google Scholar 

  • Hubscher U, Kornberg A (1979) The delta subunit of Escherichia coli DNA polymerase III holoenzyme is the dnaX gene product. Proc Natl Acad Sci USA 76:6284–6288

    Article  PubMed  CAS  Google Scholar 

  • Isarankura-Na-Ayudhya P, Isarankura-Na-Ayudhya C, Treeratanapaiboon L, Kasikun K, K T, Prachayasittikul V (2009) Proteomic profiling of Escherichia coli in response to heavy metals stress. Eur J Sci Res 25:679–688

    Google Scholar 

  • Kao WC, Chen YR, Yi EC, Lee H, Tian Q, Wu KM, Tsai SF, Yu SS, Chen YJ, Aebersold R, Chan SI (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279:51554–51560

    Article  PubMed  CAS  Google Scholar 

  • Kershaw CJ, Brown NL, Constantinidou C, Patel MD, Hobman JL (2005) The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology 151:1187–1198

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36:1495–1502

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  PubMed  CAS  Google Scholar 

  • Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106:8344–8349

    Article  PubMed  CAS  Google Scholar 

  • Macomber L, Rensing C, Imlay JA (2007) Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Magnani D, Barre O, Gerber SD, Solioz M (2008) Characterization of the CopR regulon of Lactococcus lactis IL1403. J Bacteriol 190:536–545

    Article  PubMed  CAS  Google Scholar 

  • Mehtar S, Wiid I, Todorov SD (2007) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in vitro study. J Hosp Infect 68:45–51

    Article  PubMed  Google Scholar 

  • Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 87:1875–1879

    Article  PubMed  CAS  Google Scholar 

  • Miller CD, Pettee B, Zhang C, Pabst M, McLean JE, Anderson AJ (2009) Copper and cadmium: responses in Pseudomonas putida KT2440. Lett Appl Microbiol 49:775–783

    Article  PubMed  CAS  Google Scholar 

  • Molteni C, Abicht HK, Solioz M (2010) Killing of bacteria by copper surfaces involves dissolved copper. Appl Environ Microbiol 76:4099–4101

    Article  PubMed  CAS  Google Scholar 

  • Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der Lelie D, Vallaeys T (2006) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776

    Article  PubMed  CAS  Google Scholar 

  • Nägele E, Vollmer M, Horth P (2003) Two-dimensional nano-liquid chromatography-mass spectrometry system for applications in proteomics. J Chromatogr A 1009:197–205

    Article  PubMed  Google Scholar 

  • Nandakumar R, Madayiputhiya N, Fouad AF (2009) Proteomic analysis of endodontic infections by liquid chromatography-tandem mass spectrometry. Oral Microbiol Immunol 24:347–352

    Article  PubMed  CAS  Google Scholar 

  • Noyce JO, Michels H, Keevil CW (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect 63:289–297

    Article  PubMed  CAS  Google Scholar 

  • Outinen PA, Sood SK, Liaw PC, Sarge KD, Maeda N, Hirsh J, Ribau J, Podor TJ, Weitz JI, Austin RC (1998) Characterization of the stress-inducing effects of homocysteine. Biochem J 332(Pt 1):213–221

    PubMed  CAS  Google Scholar 

  • Quaranta D, Krans T, Espirito Santo C, Elowsky CG, Domaille DW, Chang CJ, Grass G (2011) Mechanisms of yeast contact-killing on dry metallic copper surfaces. Appl Environ Microbiol 77:416–426

    Article  PubMed  CAS  Google Scholar 

  • Requena JR, Chao CC, Levine RL, Stadtman ER (2001) Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci USA 98:69–74

    Article  PubMed  CAS  Google Scholar 

  • Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Sundaram CS, Luthra PM, Singh Y, Sirdeshmukh R, Gade WN (2006) Role of proteins in resistance mechanism of Pseudomonas fluorescens against heavy metal induced stress with proteomics approach. J Biotechnol 126:374–382

    Article  PubMed  CAS  Google Scholar 

  • Starkebaum G, Harlan JM (1986) Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest 77:1370–1376

    Article  PubMed  CAS  Google Scholar 

  • Tamarit J, Cabiscol E, Ros J (1998) Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem 273:3027–3032

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  PubMed  CAS  Google Scholar 

  • Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, Parsek MR (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188:7242–7256

    Article  PubMed  CAS  Google Scholar 

  • Warnes SL, Green SM, Michels HT, Keevil CW (2010) Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs. Appl Environ Microbiol 76:5390–5401

    Article  PubMed  CAS  Google Scholar 

  • Weaver L, Michels HT, Keevil CW (2010) Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Lett Appl Microbiol 50:18–23

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280:1448–1456

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The mass spectrometry analysis was conducted at the Proteomic and Metabolomic Core facility, Redox biology center, UNL and the research was supported by NIH Grant Number P20 RR-17675, from the National Center for Research Resources. The contents of this article are solely the responsibility of the authors and do not represent the official views of the NIH. We also acknowledge funds from the International Copper Association (ICA), the Copper Development Association (CDA), and a University of Nebraska-Lincoln Office of Research Faculty Seed grant to G.G. C.E.S. was supported by a Fundação para a Ciência e Tecnologia, Portugal, graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Grass.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandakumar, R., Espirito Santo, C., Madayiputhiya, N. et al. Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces. Biometals 24, 429–444 (2011). https://doi.org/10.1007/s10534-011-9434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9434-5

Keywords

Navigation