Skip to main content

Advertisement

Log in

Systems biology approach to Wilson’s disease

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Wilson’s disease (WD) is a severe disorder of copper misbalance, which manifests with a wide spectrum of liver pathology and/or neurologic and psychiatric symptoms. WD is caused by mutations in a gene encoding a copper-transporting ATPase ATP7B and is accompanied by accumulation of copper in tissues, especially in the liver. Copper-chelation therapy is available for treatment of WD symptoms and is often successful, however, significant challenges remain with respect to timely diagnostics and treatment of the disease. The lack of genotype-phenotype correlation remains unexplained, the causes of fulminant liver failure are not known, and the treatment of neurologic symptoms is only partially successful, underscoring the need for better understanding of WD mechanisms and factors that influence disease manifestations. Recent gene and protein profiling studies in animal models of WD began to uncover cellular processes that are primarily affected by copper accumulation in the liver. The results of such studies, summarized in this review, revealed new molecular players and pathways (cell cycle and cholesterol metabolism, mRNA splicing and nuclear receptor signaling) linked to copper misbalance. A systems biology approach promises to generate a comprehensive view of WD onset and progression, thus helping with a more fine-tune treatment and monitoring of the disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed S, Deng J, Borjigin J (2005) A new strain of rat for functional analysis of PINA. Brain Res Mol Brain Res 137(1–2):63–69

    Article  PubMed  CAS  Google Scholar 

  • Allen KJ et al (2006) Chronological changes in tissue copper, zinc and iron in the toxic milk mouse and effects of copper loading. Biometals 19(5):555–564

    Article  PubMed  CAS  Google Scholar 

  • Barnes N, Tsivkovskii R, Tsivkovskaia N, Lutsenko S (2005) The copper-transporting ATPases, Menkes and Wilson disease proteins, have distinct roles in adult and developing cerebellum. J Biol Chem 280(10):9640–9645

    Article  PubMed  CAS  Google Scholar 

  • Bartee MY, Lutsenko S (2007) Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level. Biometals 20(3–4):627–637

    Article  PubMed  CAS  Google Scholar 

  • Bensinger SJ et al (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134(1):97–111

    Article  PubMed  CAS  Google Scholar 

  • Biempica L, Rauch H, Quintana N, Sternlieb I (1988) Morphologic and chemical studies on a murine mutation (toxic milk mice) resulting in hepatic copper toxicosis. Lab Invest 59(4):500–508

    PubMed  CAS  Google Scholar 

  • Buiakova OI et al (1999) Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet 8(9):1665–1671

    Article  PubMed  CAS  Google Scholar 

  • Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5(4):327–337

    Article  PubMed  CAS  Google Scholar 

  • Burkhead JL, Ralle M, Wilmarth P, David L, Lutsenko S (2010) Elevated copper remodels hepatic RNA processing machinery in the mouse model of Wilson’s disease. J Mol Biol 406(1):44–58

    Article  PubMed  Google Scholar 

  • Casafont I, Bengoechea R, Tapia O, Berciano MT, Lafarga M (2009) TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons. J Struct Biol 167:235–241

    Article  PubMed  CAS  Google Scholar 

  • Choi BS, Zheng W (2009) Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res 1248:14–21

    Article  PubMed  CAS  Google Scholar 

  • Coronado V, Nanji M, Cox DW (2001) The Jackson toxic milk mouse as a model for copper loading. Mamm Genome 12(10):793–795

    Article  PubMed  CAS  Google Scholar 

  • Cui H, Wu F, Sun Y, Fan G, Wang Q (2010) Up-regulation and subcellular localization of hnRNP A2/B1 in the development of hepatocellular carcinoma. BMC Cancer 10:356

    Article  PubMed  Google Scholar 

  • Czlonkowska A, Gromadzka G, Chabik G (2009) Monozygotic female twins discordant for phenotype of Wilson’s disease. Mov Disord 24(7):1066–1069

    Article  PubMed  Google Scholar 

  • Das SK, Ray K (2006) Wilson’s disease: an update. Nat Clin Pract Neurol 2:482–493

    Article  PubMed  Google Scholar 

  • Ferenci P (2005) Wilson’s disease. Clin Gastroenterol Hepatol 3(8):726–733

    Article  PubMed  CAS  Google Scholar 

  • Ferenci P (2006) Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: impact on genetic testing. Hum Genet 120(2):151–159

    Article  PubMed  CAS  Google Scholar 

  • Folhoffer A et al (2007) Novel mutations of the ATP7B gene among 109 Hungarian patients with Wilson’s disease. Eur J Gastroenterol Hepatol 19(2):105–111

    Article  PubMed  CAS  Google Scholar 

  • Ghose R, Zimmerman TL, Thevananther S, Karpen SJ (2004) Endotoxin leads to rapid subcellular re-localization of hepatic RXRalpha: a novel mechanism for reduced hepatic gene expression in inflammation. Nucl Recept 2(1):4

    Article  PubMed  Google Scholar 

  • Gupta A et al (2005) Molecular pathogenesis of Wilson disease: haplotype analysis, detection of prevalent mutations and genotype-phenotype correlation in Indian patients. Hum Genet 118(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M et al (2006) Accumulation of copper induces DNA strand breaks in brain cells of Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson Disease. Exp Anim 55(5):419–426

    Article  PubMed  CAS  Google Scholar 

  • Hermann W et al (2002) Genotype correlation with fine motor symptoms in patients with Wilson’s disease. Eur Neurol 48(2):97–101

    Article  PubMed  CAS  Google Scholar 

  • Hoek KS, Kidd GJ, Carson JH, Smith R (1998) hnRNP A2 selectively binds the cytoplasmic transport sequence of myelin basic protein mRNA. Biochemistry 37:7021–7029

    Article  PubMed  CAS  Google Scholar 

  • Huster D (2010) Wilson disease. Best Pract Res Clin Gastroenterol 24(5):531–539

    Article  PubMed  CAS  Google Scholar 

  • Huster D, Weizenegger M, Kress S, Mossner J, Caca K (2004) Rapid detection of mutations in Wilson disease gene ATP7B by DNA strip technology. Clin Chem Lab Med 42(5):507–510

    Article  PubMed  CAS  Google Scholar 

  • Huster D et al (2006) Consequences of copper accumulation in the livers of the Atp7b−/− (Wilson disease gene) knockout mice. Am J Pathol 168(2):423–434

    Article  PubMed  CAS  Google Scholar 

  • Huster D et al (2007) High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J Biol Chem 282(11):8343–8355

    Article  PubMed  CAS  Google Scholar 

  • Kasai N et al (1990) Clinico-pathological studies of LEC rats with hereditary hepatitis and hepatoma in the acute phase of hepatitis. Lab Anim Sci 40(5):502–505

    PubMed  CAS  Google Scholar 

  • Kegley KM et al (2010) Fulminant Wilson’s disease requiring liver transplantation in one monozygotic twin despite identical genetic mutation. Am J Transplant 10(5):1325–1329

    Article  PubMed  CAS  Google Scholar 

  • King A et al (2010) Abnormal TDP-43 expression is identified in the neocortex in cases of dementia pugilistica, but is mainly confined to the limbic system when identified in high and moderate stages of Alzheimer’s disease. Neuropathology 30(4):408–419

    Article  PubMed  Google Scholar 

  • Klein D, Lichtmannegger J, Finckh M, Summer KH (2003) Gene expression in the liver of Long-Evans cinnamon rats during the development of hepatitis. Arch Toxicol 77(10):568–575

    Article  PubMed  CAS  Google Scholar 

  • Kucinskas L et al (2008) High frequency of the c.3207C>A (p.H1069Q) mutation in ATP7B gene of Lithuanian patients with hepatic presentation of Wilson’s disease. World J Gastroenterol 14(38):5876–5879

    Article  PubMed  CAS  Google Scholar 

  • Kusuda Y et al (2000) Novel mutations of the ATP7B gene in Japanese patients with Wilson disease. J Hum Genet 45(2):86–91

    Article  PubMed  CAS  Google Scholar 

  • La Fontaine S et al (2001) Effect of the toxic milk mutation (tx) on the function and intracellular localization of Wnd, the murine homologue of the Wilson copper ATPase. Hum Mol Genet 10(4):361–370

    Article  PubMed  CAS  Google Scholar 

  • Levy E et al (2007) Abnormal hepatobiliary and circulating lipid metabolism in the Long-Evans Cinnamon rat model of Wilson’s disease. Life Sci 80(16):1472–1483

    Article  PubMed  CAS  Google Scholar 

  • Li H et al (2009) Identification of mRNA binding proteins that regulate the stability of LDL receptor mRNA through AU-rich elements. J Lipid Res 50(5):820–831

    Article  PubMed  CAS  Google Scholar 

  • Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87(3):1011–1046

    Article  PubMed  CAS  Google Scholar 

  • Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106(20):8344–8349

    Article  PubMed  CAS  Google Scholar 

  • Mak CM et al (2008) Mutational analysis of 65 Wilson disease patients in Hong Kong Chinese: identification of 17 novel mutations and its genetic heterogeneity. J Hum Genet 53(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • Marquez A, Villa-Trevino S, Gueraud F (2007) The LEC rat: a useful model for studying liver carcinogenesis related to oxidative stress and inflammation. Redox Rep 12(1):35–39

    Article  PubMed  CAS  Google Scholar 

  • Marquez-Quinones A et al (2007) Proteasome activity deregulation in LEC rat hepatitis: following the insights of transcriptomic analysis. OMICS 11(4):367–384

    Article  PubMed  Google Scholar 

  • McElwee MK, Song MO, Freedman JH (2009) Copper activation of NF-kappaB signaling in HepG2 cells. J Mol Biol 393(5):1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Mercado PA, Ayala YM, Romano M, Buratti E, Baralle FE (2005) Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res 33(18):6000–6010

    Article  PubMed  CAS  Google Scholar 

  • Merle U et al (2010) Truncating mutations in the Wilson disease gene ATP7B are associated with very low serum ceruloplasmin oxidase activity and an early onset of Wilson disease. BMC Gastroenterol 10:8

    Article  PubMed  Google Scholar 

  • Morello F et al (2009) LXR-activating oxysterols induce the expression of inflammatory markers in endothelial cells through LXR-independent mechanisms. Atherosclerosis 207:38–44

    Article  PubMed  CAS  Google Scholar 

  • Muller P et al (2007) Gene expression profiling of liver cells after copper overload in vivo and in vitro reveals new copper-regulated genes. J Biol Inorg Chem 12(4):495–507

    Article  PubMed  CAS  Google Scholar 

  • Munro TP et al (1999) Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking. J Biol Chem 274:34389–34395

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu Y et al (1995) The rat homologue of the Wilson’s disease gene was partially deleted at the 3′ end of its protein-coding region in Long-Evans Cinnamon mutant rats. Res Commun Mol Pathol Pharmacol 89(3):421–424

    PubMed  CAS  Google Scholar 

  • Nair J et al (1998) Lipid peroxidation-induced etheno-DNA adducts in the liver of patients with the genetic metal storage disorders Wilson’s disease and primary hemochromatosis. Cancer Epidemiol Biomarkers Prev 7(5):435–440

    PubMed  CAS  Google Scholar 

  • Nicastro E et al (2009) Genotype-phenotype correlation in Italian children with Wilson’s disease. J Hepatol 50(3):555–561

    Article  PubMed  CAS  Google Scholar 

  • Okada T et al (2010) High prevalence of fulminant hepatic failure among patients with mutant alleles for truncation of ATP7B in Wilson’s disease. Scand J Gastroenterol 45(10):1232–1237

    Article  PubMed  CAS  Google Scholar 

  • Park HD, Ki CS, Lee SY, Kim JW (2009) Carrier frequency of the R778L, A874V, and N1270S mutations in the ATP7B gene in a Korean population. Clin Genet 75(4):405–407

    Article  PubMed  CAS  Google Scholar 

  • Peebles KA, Dwyer-Nield LD, Malkinson AM (2007) Altered expression of splicing factor, heterogeneous nuclear ribonucleoprotein A2/B1, in mouse lung neoplasia. Mol Carcinog 46(11):887–900

    Article  PubMed  CAS  Google Scholar 

  • Petrukhin K et al (1994) Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predictions. Hum Mol Genet 3(9):1647–1656

    Article  PubMed  CAS  Google Scholar 

  • Phinney AL et al (2003) In vivo reduction of amyloid-beta by a mutant copper transporter. Proc Natl Acad Sci USA 100(24):14193–14198

    Article  PubMed  CAS  Google Scholar 

  • Platonova NA et al (2005) In vivo expression of copper transporting proteins in rat brain sections. (Trans from Rus) Izv Akad Nauk Ser Biol 2:141–154 (in Russian)

    Google Scholar 

  • Raju CS et al (2008) In cultured oligodendrocytes the A/B-type hnRNP CBF-A accompanies MBP mRNA bound to mRNA trafficking sequences. Mol Biol Cell 19:3008–3019

    Article  PubMed  CAS  Google Scholar 

  • Ralle M et al (2010) Wilson disease at a single cell level: intracellular copper trafficking activates compartment-specific responses in hepatocytes. J Biol Chem 285(40):30875–30883

    Article  PubMed  CAS  Google Scholar 

  • Roberts EA, Robinson BH, Yang S (2008) Mitochondrial structure and function in the untreated Jackson toxic milk (tx-j) mouse, a model for Wilson disease. Mol Genet Metab 93(1):54–65

    Article  PubMed  CAS  Google Scholar 

  • Santos EM et al (2010) Identifying health impacts of exposure to copper using transcriptomics and metabolomics in a fish model. Environ Sci Technol 44(2):820–826

    Article  PubMed  CAS  Google Scholar 

  • Shan J et al (2000) Binding of an RNA trafficking response element to heterogeneous nuclear ribonucleoproteins A1 and A2. J Biol Chem 275(49):38286–38295

    Article  PubMed  CAS  Google Scholar 

  • Stapelbroek JM et al (2004) The H1069Q mutation in ATP7B is associated with late and neurologic presentation in Wilson disease: results of a meta-analysis. J Hepatol 41:758–763

    Article  PubMed  CAS  Google Scholar 

  • Tanzi RE et al (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5(4):344–350

    Article  PubMed  CAS  Google Scholar 

  • Theophilos MB, Cox DW, Mercer JF (1996) The toxic milk mouse is a murine model of Wilson disease. Hum Mol Genet 5(10):1619–1624

    Article  PubMed  CAS  Google Scholar 

  • Trocello JM et al (2010) Corpus callosum abnormalities in Wilson’s disease. J Neurol Neurosurg Psychiatry

  • Tsubota A et al (2010) IQGAP1 and vimentin are key regulator genes in naturally occurring hepatotumorigenesis induced by oxidative stress. Carcinogenesis 31(3):504–511

    Article  PubMed  CAS  Google Scholar 

  • Voskoboinik I, Greenough M, La Fontaine S, Mercer JF, Camakaris J (2001) Functional studies on the Wilson copper P-type ATPase and toxic milk mouse mutant. Biochem Biophys Res Commun 281(4):966–970

    Article  PubMed  CAS  Google Scholar 

  • Vrabelova S, Letocha O, Borsky M, Kozak L (2005) Mutation analysis of the ATP7B gene and genotype/phenotype correlation in 227 patients with Wilson disease. Mol Genet Metab 86(1–2):277–285

    Article  PubMed  CAS  Google Scholar 

  • Wilson AM, Schlade-Bartusiak K, Tison JL, Macintyre G, Cox DW (2009) A minigene approach for analysis of ATP7B splice variants in patients with Wilson disease. Biochimie 91(10):1342–1345

    Article  PubMed  CAS  Google Scholar 

  • Wu ZY et al (2001) Mutation analysis and the correlation between genotype and phenotype of Arg778Leu mutation in Chinese patients with Wilson disease. Arch Neurol 58(6):971–976

    Article  PubMed  CAS  Google Scholar 

  • Wu S et al (2003) hnRNP B1 protein may be a possible prognostic factor in squamous cell carcinoma of the lung. Lung Cancer 41(2):179–186

    Article  PubMed  Google Scholar 

  • Yasuda J et al (2006) Reactive oxygen species modify oligosaccharides of glycoproteins in vivo: a study of a spontaneous acute hepatitis model rat (LEC rat). Biochem Biophys Res Commun 342(1):127–134

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Dahlman-Wright K (2010) Liver X receptor in cholesterol metabolism. J Endocrinol 204(3):233–240

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health grants R21 DK075659 and P01 GM067166 to SL. JLB is supported the sub-award to P20RR016466-10; LG is a recipient of the NRSA fellowship F31DK084730-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Lutsenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkhead, J.L., Gray, L.W. & Lutsenko, S. Systems biology approach to Wilson’s disease. Biometals 24, 455–466 (2011). https://doi.org/10.1007/s10534-011-9430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9430-9

Keywords

Navigation