Skip to main content
Log in

Hydroxamate siderophores of the ectomycorrhizal fungi Suillus granulatus and S. luteus

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Despite indications that S. granulatus and S. luteus release iron-chelating compounds, the exact spectrum of ferric hydroxamates synthesized by these two Suillus species remained unclear. Hence the aim of this study was to identify all of the main siderophores produced by these two ectomycorrhizal fungal species under pure culture conditions. By means of HPLC and LC–MS analyses we show that S. granulatus releases cyclic and linear fusigen, ferrichrome, coprogen and triacetylfusarinine C into the nutrient medium, while S. luteus culture filtrates contain cyclic and linear fusigen, ferricrocin and coprogen. All of the different siderophores were identified on basis of reference compounds and their specific MS spectra which were recorded on a high resolution MS in positive electrospray ionisation mode. Initial HPLC separations were performed on a C-18 stationary phase, using an acidic eluent (0.1% formic acid in water and acetonitrile) in gradient mode. The potential of these two ectomycorrhizal fungal species to produce siderophores representing three different groups of hydroxamates is discussed in relation to its ecological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blume HP, Brümmer GW, Schwertmann U, Horn R, Kögel-Knabner I, Stahr K, Auerswald K, Beyer L, Hartmann A, Litz N, Scheinost A, Stanjek H, Welp G, Wilke BM (2002) Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Buss HL, Lüttge A, Brantley SL (2007) Etch pit formation on iron silicates during siderophore-promoted dissolution. Chem Geol 240:326–342

    Article  CAS  Google Scholar 

  • Courty PE, Buée M, Diedhiou AD, Frey-Klett P, Le Tacon F, Rineau F, Turpault MP, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  • Dahlberg A, Finlay RD (1999) Suillus. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi. Springer, Berlin, pp 33–64

    Google Scholar 

  • Essen SA, Bylund D, Holmström SJM, Moberg M, Lundström US (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19:269–282

    Article  CAS  PubMed  Google Scholar 

  • Haselwandter K (2008) Structure and function of siderophores produced by mycorrhizal fungi. Mineral Mag 72:61–64

    Article  CAS  Google Scholar 

  • Haselwandter K, Winkelmann G (2002) Ferricrocin: an ectomycorrhizal siderophore of Cenococcum geophilum. Biometals 15:73–77

    Article  CAS  PubMed  Google Scholar 

  • Haselwandter K, Winkelmann G (2007) Siderophores of symbiotic fungi. In: Chincholkar SB, Varma A (eds) Microbial siderophores. Soil biology series, vol 12. Springer, Berlin, pp 91–103

    Google Scholar 

  • Haselwandter K, Winkelmann G (2009) Siderophores of mycorrhizal fungi: detection, isolation and identification. In: Varma A, Kharkwal AC (eds) Symbiotic fungi. Soil biology series, vol 18. Springer, Berlin, pp 393–402

    Chapter  Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, van Hees PAW, van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264

    Article  Google Scholar 

  • Konetschny-Rapp S, Huschka HG, Winkelmann G, Jung G (1988) High-performance liquid chromatography of siderophores from fungi. Biometals 1:9–17

    CAS  Google Scholar 

  • Kretzer A, Li Y, Szaro T, Bruns TD (1996) Internal transcribed spacer sequences from 38 recognized species of Suillus sensu lato: phylogenetic and taxonomic implications. Mycologia 88:776–785

    Article  CAS  Google Scholar 

  • Leyval C, Watteau F, Berthelin J, Reid CPPP (1992) Production of siderophores by ectomycorrhizal fungi. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 389–390

    Google Scholar 

  • Machuca A, Pereira G, Aguiar A, Milagres AMF (2006) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12

    Article  Google Scholar 

  • Moberg M, Holmström SJM, Lundström US, Markides KE (2003) Novel approach to the determination of structurally similar hydroxamate siderophores by column-switching capillary liquid chromatography coupled to mass spectrometry. J Chromatogr A 1020:91–97

    Article  CAS  PubMed  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman & Hall, New York, pp 357–423

    Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Dekker, New York, pp 1–33

    Google Scholar 

  • Pierwola A, Krupinski T, Zalupski P, Chiarelli M, Castignetti D (2004) Degradation pathway and generation of monohydroxamic acids from the trihydroxamate siderophore deferrioxamine B. Appl Environ Microb 70:831–836

    Article  CAS  Google Scholar 

  • Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron chelators in soils. Nature 287:833–834

    Article  CAS  Google Scholar 

  • Reichard PU, Kretzschmar R, Kraemer SM (2007) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim Cosmochim Acta 71:5635–5650

    Article  CAS  Google Scholar 

  • Szaniszlo PJ, Powell PE, Reid CPP, Cline GR (1981) Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia 73:1158–1174

    Article  CAS  Google Scholar 

  • van Hees PAW, Rosling A, Essen S, Godbold DL, Jones DL, Finlay RD (2006) Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytol 169:367–377

    Article  PubMed  Google Scholar 

  • Warren RAJ, Neilands JB (1964) Microbial degradation of the ferrichrome compounds. J Gen Microbiol 35:459–470

    CAS  PubMed  Google Scholar 

  • Watteau F, Berthelin J (1994) Mineral dissolution of iron and aluminium from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur J Soil Biol 30:1–9

    CAS  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann G, Busch B, Hartmann A, Kirchhof G, Süßmuth R, Jung G (1999) Degradation of desferrioxamines by Azospirillum irakense: assignment of metabolites by HPLC/electrospray mass spectrometry. Biometals 12:255–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Strain DOM of Suillus granulatus (L. ex Fr.) O. Kuntze was kindly provided by F. Martin, INRA-Nancy, F-54280 Champenoux.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Haselwandter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haselwandter, K., Häninger, G. & Ganzera, M. Hydroxamate siderophores of the ectomycorrhizal fungi Suillus granulatus and S. luteus . Biometals 24, 153–157 (2011). https://doi.org/10.1007/s10534-010-9383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9383-4

Keywords

Navigation