Skip to main content
Log in

Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume Medicago truncatula

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

To understand how plants from the Fabaceae family maintain zinc (Zn) homeostasis, we have characterized the kinetics of three Zn transporting proteins from the ZIP family of divalent metal transporters in the model legume Medicago truncatula. Of six ZIP’s studied, MtZIP1, MtZIP5 and MtZIP6 were the only members from this family determined to transport Zn and were further characterized. MtZIP1 has a low affinity for Zn with a Km of 1 μM as compared to MtZIP5 and MtZIP6 that have a higher affinity for Zn with Km of 0.4 μM and 0.3 μM, respectively. Zn transport by MtZIP1 was more sensitive to inhibition by copper (Cu) concentrations than MtZIP5 and MtZIP6, because 3 μM Cu inhibited Zn transport by 80% in MtZIP1 while 5 μM Cu was required to achieve the same inhibition of Zn transport in MtZIP5 and MtZIP6. Cadmium (Cd) had a greater effect on the ability of MtZIP1 to transport Zn than MtZIP5 and MtZIP6, because at a concentration of 3 μM Cd, the Zn transport by MtZIP1 was inhibited 55% and the transport of Zn by MtZIP5 and MtZIP6 was inhibited by 20–30%. However, only MtZIP6 transported Cd at higher rates than those observed in the control plasmid pFL61, demonstrating a low affinity for Cd based on a Km of 57 μM. These results suggest that Medicago truncatula has both high and low affinity Zn transporters to maintain Zn homeostasis and that these transporters may function in different compartments within the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bal W, Kozlowski H, Kupryszewski G, Mackiewicz Z, Pettit L, Robbins R (1993) Complexes of Cu(II) with Asn-Ser-Phe-Arg-Tyr-NH2; an example of metal ion-promoted conformational organization which results in exceptionally high complex stability. J Inorg Biochem 52:79–87

    Article  CAS  PubMed  Google Scholar 

  • Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  CAS  PubMed  Google Scholar 

  • Blaudez D, Kohler A, Martin F, Sanders D, Chalot M (2003) Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell 15:2911–2928

    Article  CAS  PubMed  Google Scholar 

  • Bowen JE (1969) Absorption of copper, zinc, and manganese by sugarcane leaf tissue. Plant Physiol 44:255–261

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator thlaspi-caerulescens and metal-tolerant silene-vulgaris grown on sludge-amended soils. Environ Sci Technol 29:1581–1585

    Article  CAS  Google Scholar 

  • Burleigh SH, Kristensen BK, Bechmann IE (2003) A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol 52:1077–1088

    Article  CAS  PubMed  Google Scholar 

  • Carroll M, Loneragan J (1968) Response of plant species to concentrations of zinc in solution. I. Growth and zinc content of plants. Aust J Agric Res 19:859–868

    Article  CAS  Google Scholar 

  • Cellier M, Prive G, Belouchi A, Kwan T, Rodrigues V, Chia W, Gros P (1995) Nramp defines a family of membrane proteins. Proc Natl Acad Sci USA 92:10089–10093

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry FM, Loneragan JF (1972) Zinc absorption by wheat seedlings and the nature of its inhibition by alkaline earth cations. J Exp Bot 23:552–560

    Article  CAS  Google Scholar 

  • Clark C, Holland P, Smith G (1986) Chemical composition of bleeding xylem sap from kiwifruit vines. Ann Bot 58:353–362

    CAS  Google Scholar 

  • Cohen CK, Garvin DF, Kochian LV (2004) Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta 218:784–792

    Article  CAS  PubMed  Google Scholar 

  • Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946

    Article  CAS  PubMed  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  PubMed  Google Scholar 

  • DiDonato RJ Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–414

    Article  CAS  PubMed  Google Scholar 

  • Eide D, Kaplan S, Jordan I, Sipe D, Kaplan J (1992) Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently. J Biol Chem 267:20774–20781

    CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. PNAS 93:5624–5628

    Article  CAS  PubMed  Google Scholar 

  • Eng BH, Guerinot ML, Eide D, Saier J (1998) Sequence analyses and phylogenetic characterization of the zip family of metal ion transport proteins. J Membr Biol 166:1–7

    Article  CAS  PubMed  Google Scholar 

  • Freedman JH, Pickart L, Weinstein B, Mims WB, Peisach J (1982) Structure of the Glycyl-L-histidyl-L-lysine–copper(II) complex in solution. Biochemistry 21:4540–4544

    Article  CAS  PubMed  Google Scholar 

  • Gietz DR, Schiestl RH (1991) Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263

    Article  CAS  PubMed  Google Scholar 

  • Giordano PM, Noggle CJ, Mortvedt JJ (1974) Zinc uptake by rice, as affected by metabolic inhibitors and competing cations. Plant Soil 41:637–646

    Article  CAS  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochimica et Biophysica Acta-Biomembranes 1465:190–198

    Article  CAS  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Kochian LV (2001) High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol 125:456–463

    Article  CAS  PubMed  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32:215–226

    Article  CAS  PubMed  Google Scholar 

  • Hawf LR, Schmid WE (1967) Uptake and translocation of zinc by intact plants. Plant Soil 27:249–260

    Article  CAS  Google Scholar 

  • Hocking P (1980) The composition of phloem exudate and xylem sap from tree tobacco (Nicotiana glauca Grah.). Ann Bot 45:633–643

    CAS  Google Scholar 

  • Hocking P, Pate J, Atkins C, Sharkey P (1978) Diurnal patterns of transport and accumulation of minerals in fruiting plants of Lupinus angustifolius L. Ann Bot 42:1277–1290

    CAS  Google Scholar 

  • Kausar MA, Chaudhry FM, Rashid A, Latif A, Alam SM (1976) Micronutrient availability to cereals from calcareous soils. Plant Soil 45:397–410

    Article  CAS  Google Scholar 

  • Kochian LV (1991) Mechanisms of micronutrient uptake and translocation in plants. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture. Soil Science Society of America Inc, Madison, pp 229–296

    Google Scholar 

  • Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226:1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Korshunova YO, Eide D, Gregg Clark W, Lou Guerinot M, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  CAS  PubMed  Google Scholar 

  • Lipscomb WN, Strater N (1996) Recent advances in zinc enzymology. Chem Rev 96:2375–2434

    Article  CAS  PubMed  Google Scholar 

  • López-Millán A-F, Ellis DR, Grusak MA (2004) Identification and characterization of several new members of the zip family of metal ion transporters in medicago truncatula. Plant Mol Biol 54:583–596

    Article  PubMed  Google Scholar 

  • McCall KA, Huang C, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130:1437S–1446S

    CAS  PubMed  Google Scholar 

  • Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176

    Article  CAS  PubMed  Google Scholar 

  • Minet M, Dufour ME, Lacroute F (1992) Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J 2:417–422

    CAS  PubMed  Google Scholar 

  • Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem 277:4738–4746

    Article  CAS  PubMed  Google Scholar 

  • Ooi CE, Rabinovich E, Dancis A, Bonifacino JS, Klausner RD (1996) Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J 15:3515–3523

    CAS  PubMed  Google Scholar 

  • Orfei M, Alcaro MC, Marcon G, Chelli M, Ginanneschi M, Kozlowski H, Brasun J, Messori L (2003) Modeling of copper(II) sites in proteins based on histidyl and glycyl residues. J.Inorg.Biochem. 97:299–307

    Article  CAS  PubMed  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    Article  CAS  PubMed  Google Scholar 

  • Petris MJ, Smith K, Lee J, Thiele DJ (2003) Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem 278:9639–9646

    Article  CAS  PubMed  Google Scholar 

  • Sukkariyah BF, Evanylo G, Zelazny L, Chaney RL (2005) Cadmium, copper, nickel, and zinc availability in a biosolids-amended piedmont soil years after application. J Environ Qual 34:2255–2262

    Article  CAS  PubMed  Google Scholar 

  • Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659

    Article  CAS  PubMed  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. In: Donald LS (ed) Advances in Agronomy. Academic Press, San Diego, pp 173–212

    Google Scholar 

  • Weast R (1976) CRC Handbook of Chemistry and Physics. CRC Press, Cleveland

    Google Scholar 

  • White MC, Decker AM, Chaney RL (1981) Metal Complexation in Xylem Fluid: I. Chemical Composition of Tomato And Soybean Stem Exudate. Plant Physiol 67:292–300

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Eide D (1996a) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. PNAS 93:2454–2458

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Eide D (1996b) The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem 271:23203–23210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by HarvestPlus under Agreement number 58-6250-4-F029 and by the USDA-ARS under Agreement number 58-6250-6-003 to MAG. The contents of this publication do not necessarily reflect the views or policies of the US Department of Agriculture, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Grusak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephens, B.W., Cook, D.R. & Grusak, M.A. Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume Medicago truncatula . Biometals 24, 51–58 (2011). https://doi.org/10.1007/s10534-010-9373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9373-6

Keywords

Navigation