Skip to main content

Advertisement

Log in

Iron acquisition in the dental pathogen Actinobacillus actinomycetemcomitans: What does it use as a source and how does it get this essential metal?

  • Published:
BioMetals Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Actinobacillus actinomycetemcomitans requires iron to grow under limiting conditions imposed by synthetic and natural chelators. Although none of the strains tested used hemoglobin, lactoferrin or transferrin, all of them used FeCl3 and hemin as iron sources under chelated conditions. Dot-blot binding assays showed that all strains bind lactoferrin, hemoglobin, and hemin but not transferrin. When compared with smooth strains, the rough isolates showed higher hemin binding activity, which was sensitive to proteinase K treatment. A. actinomycetemcomitans harbors the Fur-regulated afeABCD locus coding for iron acquisition in isogenic and non-isogenic cell backgrounds. The genome of this oral pathogen also harbors several other predicted iron uptake genes including the hitABC locus, which restored iron acquisition in the E. coli 1017 ent mutant. However, the disruption of this locus in the parental strain did not affect iron acquisition as drastically as the inactivation of AfeABCD, suggesting that the latter system could be more involved in iron transport than the HitABC system. The genome of this oral pathogen also harbors an active copy of the exbBexbDtonB operon, which could provide the energy needed for hemin acquisition. However, inactivation of each coding region of this operon did not affect the hemin and iron acquisition phenotypes of isogenic derivatives. This observation suggests that the function of these proteins could be replaced by those coded for by tolQ, tolR and tolA as it was described for other bacterial transport systems. Interruption of a hasR homolog, an actively transcribed gene that is predicted to code for an outer membrane hemophore receptor protein, did not affect the ability of an isogenic derivative to bind and use hemin under chelated conditions. This result also indicates that A. actinomycetemcomitans could produce more than one outer membrane hemin receptor as it was described in other human pathogens. All strains tested formed biofilms on plastic under iron-rich and iron-chelated conditions. However, smooth strains attached poorly and formed weaker biofilms when compared with rough isolates. The incubation of rough cells in the presence of FeCl3 or hemin resulted in an increased number of smaller aggregates and microcolonies as compared to the fewer but larger aggregates formed when cells were grown in the presence of dipyridyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alugupalli KR, Kalfs S, Ewardsson S, Naidu AS (1995) Lactoferrin interaction with Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol 10:35–41

    Article  PubMed  CAS  Google Scholar 

  • Angerer A, Gaisser S, Braun V (1990) Nucleotide sequence of sfuA, sfuB, and sfuC genes of Serratia marcescens. J Bacteriol 172:572–578

    PubMed  CAS  Google Scholar 

  • Angerer A, Klupp B, Braun V (1992) Iron transport systems of Serratia marcescens. J Bacteriol 174:1378–1387

    PubMed  CAS  Google Scholar 

  • Araujo M (2002) Localized juvenile periodontitis or localized aggressive periodontitis. J Mass Dent Soc 51:14–18

    PubMed  Google Scholar 

  • Armitage GC (1999) Development of a classification system for periodontal diseases and conditions. Ann Periodontol 4:1–6

    Article  PubMed  CAS  Google Scholar 

  • Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 102:11076–11081

    Article  PubMed  CAS  Google Scholar 

  • Bearden SW, Perry RD (1999) The YFE system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32:403–414

    Article  PubMed  CAS  Google Scholar 

  • Bearden SW, Staggs TM, Perry RD (1998) An ABC transport system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. J Bacteriol 180:1135–1147

    PubMed  CAS  Google Scholar 

  • Berbari EF, Cockerill FR III, Steckelberg JM (1997) Infective endocarditis due to unusual or fastidious microorganisms. Mayo Clin Proc 72:532–542

    Article  PubMed  CAS  Google Scholar 

  • Berlutti F, Ajello M, Bosso P et al (2004) Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans. Biometals 17:271–278

    Article  PubMed  Google Scholar 

  • Bradbeer C (1993) The proton motive force drives the outer membrane transport of cobalamin in Escherichia coli. J Bacteriol 175:3146–3150

    PubMed  CAS  Google Scholar 

  • Braun V (1989) The structurally related exbB and tolQ genes are interchangeable in conferring tonB-dependent colicin, bacteriophage, and albomycin sensitivity. J Bacteriol 171:6387–6390

    PubMed  CAS  Google Scholar 

  • Braun V, Herrmann C (1993) Evolutionary relationship of uptake systems for biopolymers in Escherichia coli: cross-complementation between the TonB-ExbB-ExbD and the TolA-TolQ-TolR proteins. Mol Microbiol 8:261–268

    Article  PubMed  CAS  Google Scholar 

  • Cascales E, Lloubes R, Sturgis JN (2001) The TolQ-TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA-MotB. Mol Microbiol 42:795–807

    Article  PubMed  CAS  Google Scholar 

  • Chen C-Y, Berish SA, Morse SA, Mietzner TA (1993) The ferric-iron binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin. Mol Microbiol 10:311–318

    Article  PubMed  CAS  Google Scholar 

  • Crosa JH, Mey AR, Payne SM (2004) Iron transport in bacteria. ASM Press, Washington, DC

    Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249

    Article  PubMed  CAS  Google Scholar 

  • Derouiche R, Benedetti H, Lazzaroni JC, Lazdunski C, Lloubes R (1995) Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins. J Biol Chem 270:11078–11084

    Article  PubMed  CAS  Google Scholar 

  • Fine DH, Furgang D (2002) Lactoferrin iron levels affect attachment of Actinobacillus actinomycetemcomitans to buccal epithelial cells. J Periodontol 73:616–623

    Article  PubMed  CAS  Google Scholar 

  • Fine DH, Furgang D, Schreiner HC et al (1999) Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. Microbiology 145:1335–1347

    Article  PubMed  CAS  Google Scholar 

  • Fong KP, Gao L, Demuth DR (2003) luxS and arcB control aerobic growth of Actinobacillus actinomycetemcomitans under iron limitation. Infect Immun 71:298–308

    Article  PubMed  CAS  Google Scholar 

  • Fouz B, Mazoy R, Lemos ML, del Olmo MJ, Amaro C (1996) Utilization of hemin and hemoglobin by Vibrio vulnificus biotype 2. Appl Environ Microbiol 62:2806–2810

    PubMed  CAS  Google Scholar 

  • Genco R, Offenbacher S, Beck J (2002) Periodontal disease and cardiovascular disease: epidemiology and possible mechanisms. J Am Dent Assoc 133:14S-22S

    PubMed  Google Scholar 

  • Germon P, Ray MC, Vianney A, Lazzaroni JC (2001) Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR. J Bacteriol 183:4110–4114

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Bearden SW, Geoffroy VA, Fetherston JD, Perry RD (2001) Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect Immun 69:2829–2837

    Article  PubMed  CAS  Google Scholar 

  • Graber KR, Smoot LM, Actis LA (1998) Expression of iron binding proteins and hemin binding activity in the dental pathogen Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 163:135–142

    Article  PubMed  CAS  Google Scholar 

  • Gray-Owen SD, Schryvers AB (1996) Bacterial transferrin and lactoferrin receptors. Trends Microbiol 4:185–191

    Article  PubMed  CAS  Google Scholar 

  • Grenier D, Leduc A, Myrand D (1997) Interaction between Actinobacillus actinomycetemcomitans lipopolysaccharides and human hemoglobin. FEMS Microbiol Lett 151:77–81

    Article  PubMed  CAS  Google Scholar 

  • Haraszthy VI, Lally ET, Haraszthy GG, Zambon JJ (2002) Molecular cloning of the fur gene from Actinobacillus actinomycetemcomitans. Infect Immun 70:3170–3179

    Article  PubMed  CAS  Google Scholar 

  • Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ (2000) Identification of periodontal pathogens in atheromatous plaques. J Periodontol 71:1554–1560

    Article  PubMed  CAS  Google Scholar 

  • Haubek D, Poulsen K, Westergaard J, Dahlen G, Kilian M (1996) Highly toxic clone of Actinobacillus actinomycetemcomitans in geographically widespread cases of juvenile periodontitis in adolescents of African origin. J Clin Microbiol 34:1576–1578

    PubMed  CAS  Google Scholar 

  • Hayashida H, Poulsen K, Kilian M (2002) Differences in iron acquisition from human haemoglobin among strains of Actinobacillus actinomycetemcomitans. Microbiology 148:3993–4001

    PubMed  CAS  Google Scholar 

  • Johnson M, Cockayne A, Williams PH, Morrissey JA (2005) Iron-responsive regulation of biofilm formation in Staphylococcus aureus involves fur-dependent and fur-independent mechanisms. J Bacteriol 187:8211–8215

    Article  PubMed  CAS  Google Scholar 

  • Journet L, Rigal A, Lazdunski C, Benedetti H (1999) Role of TolR N-terminal, central, and C-terminal domains in dimerization and interaction with TolA and TolQ. J Bacteriol 181:4476–4484

    PubMed  CAS  Google Scholar 

  • Kachlany SC, Planet PJ, Bhattacharjee MK et al (2000) Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J Bacteriol 182:6169–6176

    Article  PubMed  CAS  Google Scholar 

  • Kaplan JB, Schreiner HC, Furgang D, Fine DH (2002) Population structure and genetic diversity of Actinobacillus actinomycetemcomitans strains isolated from localized juvenile periodontitis patients. J Clin Microbiol 40:1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Klebba PE (2004) Transport biochemistry of FepA. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, DC, pp. 147–157

    Google Scholar 

  • Kolenbrander PE, Egland PG, Diaz PI, Palmer RJ Jr (2005) Genome-genome interactions: bacterial communities in initial dental plaque. Trends Microbiol 13:11–15

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF et al (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  • Mey AR, Payne SM (2001) Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors. Mol Microbiol 42:835–849

    Article  PubMed  CAS  Google Scholar 

  • Meyer DD, Fives-Taylor PM (1997) The role of Actinobacillus actinomycetemcomitans in the pathogenesis of periodontal disease. Trends Microbiol 6:224–228

    Article  Google Scholar 

  • Nørskov-Lauritsen N, Kilian M (2006) Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. Int J Syst Evol Microbiol (in press)

  • Perry RD, Pendrak ML, Schuetze P (1990) Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol 172:5929–5937

    PubMed  CAS  Google Scholar 

  • Postle K, Kadner RJ (2003) Touch and go: tying TonB to transport. Mol Microbiol 49:869–882

    Article  PubMed  CAS  Google Scholar 

  • Rhodes ER, Tomaras AP, McGillivary G, Connerly PL, Actis LA (2005) Genetic and functional analyses of the Actinobacillus actinomycetemcomitans AfeABCD siderophore-independent iron acquisition system. Infect Immun 73:3758–3763

    Article  PubMed  CAS  Google Scholar 

  • Saken E, Rakin A, Heesemann J (2000) Molecular characterization of a novel siderophore-independent iron transport system in Yersinia. Int J Med Microbiol 290:51–60

    PubMed  CAS  Google Scholar 

  • Sanders JD, Cole LD, Hansen EJ (1994) Identification of a locus involved in the utilization of iron by Haemophilus influenzae. Infect Immun 62:4515–4525

    PubMed  CAS  Google Scholar 

  • Schreiner HC, Sinatra K, Kaplan JB et al (2003) Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. Proc Natl Acad Sci USA 100:7295–7300

    Article  PubMed  CAS  Google Scholar 

  • Singh PK (2004) Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 17:267–270

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    Article  PubMed  CAS  Google Scholar 

  • Spitznagel J Jr, Kraig E, Kolodrubetz D (1995) The regulation of leukotoxin production in Actinobacillus actinomycetemcomitans strain JP2. Adv Dent Res 9:48–54

    Article  PubMed  Google Scholar 

  • Stugard CE, Daskaleros PA, Payne SM (1989) A 101-kilodalton heme-binding protein associated with Congo red binding and virulence of Shigella flexneri and enteroinvasive Escherichia coli strains. Infect Immun 57:3534–3539

    PubMed  CAS  Google Scholar 

  • Tomaras AP, Dorsey CW, Edelmann RE, Actis LA (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149:3473–3484

    Article  PubMed  CAS  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  PubMed  CAS  Google Scholar 

  • Willemsen PTJ, Vulto I, Boxem M, De Graaf J (1997) Characterization of a periplasmic protein involved in iron utilization of Actinobacillus actinomycetemcomitans. J Bacteriol 179:4949–4952

    PubMed  CAS  Google Scholar 

  • Winston JL, Chen C-K, Neiders ME, Dyer DW (1993) Membrane protein expression by Actinobacillus actinomycetemcomitans in response to iron availability. J Dent Res 72:1366–1373

    PubMed  CAS  Google Scholar 

  • Witty M, Sanz C, Shah A et al (2002) Structure of the periplasmic domain of Pseudomonas aeruginosa TolA: evidence for an evolutionary relationship with the TonB transporter protein. EMBO J 21:4207–4218

    Article  PubMed  CAS  Google Scholar 

  • Zambon JJ (1985) Actinobacillus actinomycetemcomitans in human periodontal disease. J Clin Periodontol 12:1–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funds from Miami University and Public Health DE13657-02 and NSF 0420479 Grants supported the research work presented in this manuscript. We thank Richard Edelmann, Matt Duley and the Miami University Electron Microscopy Facility for their help with electron microscopy. We also thank C. Wood, coordinator of the Miami University Center of Bioinformatics and Functional Genomics for his support and assistance with automated DNA sequencing and nucleotide sequence analysis. We are grateful to Dr. D. Dyer (University of Oklahoma Health Science Center) for making available the nucleotide sequence of the A. actinomycetemcomitans HK1651 genome. We thank D. Figurski (College of Physicians and Surgeons of Columbia University) and D. Fine and S. Kachlany (New Jersey Dental School) for giving us the A. actinomycetemcomitans strains used in our studies as well as Dr. R. Perry (University of Kentucky) for providing the E. coli 1017 strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Actis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhodes, E.R., Menke, S., Shoemaker, C. et al. Iron acquisition in the dental pathogen Actinobacillus actinomycetemcomitans: What does it use as a source and how does it get this essential metal?. Biometals 20, 365–377 (2007). https://doi.org/10.1007/s10534-006-9058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9058-3

Keywords

Navigation