Skip to main content
Log in

Metabolic regulation of citrate and iron by aconitases: role of iron–sulfur cluster biogenesis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron and citrate are essential for the metabolism of most organisms, and regulation of iron and citrate biology at both the cellular and systemic levels is critical for normal physiology and survival. Mitochondrial and cytosolic aconitases catalyze the interconversion of citrate and isocitrate, and aconitase activities are affected by iron levels, oxidative stress and by the status of the Fe–S cluster biogenesis apparatus. Assembly and disassembly of Fe–S clusters is a key process not only in regulating the enzymatic activity of mitochondrial aconitase in the citric acid cycle, but also in controlling the iron sensing and RNA binding activities of cytosolic aconitase (also known as iron regulatory protein IRP1). This review discusses the central role of aconitases in intermediary metabolism and explores how iron homeostasis and Fe–S cluster biogenesis regulate the Fe–S cluster switch and modulate intracellular citrate flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912

    Article  PubMed  CAS  Google Scholar 

  • Acquaviva F, De Biase I, Nezi L et al (2005) Extra-mitochondrial localisation of frataxin and its association with IscU1 during enterocyte-like differentiation of the human colon adenocarcinoma cell line Caco-2. J Cell Sci 118:3917–3924

    Article  PubMed  CAS  Google Scholar 

  • Adam AC, Bornhovd C, Prokisch H, Neupert W, Hell K (2006) The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria. EMBO J 25:174–183

    Article  PubMed  CAS  Google Scholar 

  • Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of [2Fe-4S] and [4Fe-4S] clusters in IscU. Biochemistry 39:7856–7862

    Article  PubMed  CAS  Google Scholar 

  • Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, Koeller DM (1999) Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum Mol Genet 8:743–749

    Article  PubMed  CAS  Google Scholar 

  • Anderson PR, Kirby K, Hilliker AJ, Phillips JP (2005) RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila. Hum Mol Genet 14:3397–3405

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JS, Whiteman M, Yang H, Jones DP (2004) The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat. Bioessays 26:894–900

    Article  PubMed  CAS  Google Scholar 

  • Babcock M, de Silva D, Oaks R et al (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian R, Shen G, Bryant DA, Golbeck JH (2006) Regulatory roles for IscA and SufA in iron homeostasis and redox stress responses in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 188:3182–3191

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Aguilar Netz DJ, Tepper K, Pierik AJ, Lill R (2005) The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron–sulfur protein assembly. Mol Cell Biol 25:10833–10841

    Article  PubMed  CAS  Google Scholar 

  • Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23:41–58

    Article  PubMed  CAS  Google Scholar 

  • Beinert H, Holm RH, Munck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659

    Article  PubMed  CAS  Google Scholar 

  • Beinert H, Kennedy MC, Stout CD (1996) Aconitase as iron–protein, enzyme, and iron-regulatory protein. Chem Rev 96:2335–2374

    Article  PubMed  CAS  Google Scholar 

  • Belfiore F, Iannello S (1998) Insulin resistance in obesity: metabolic mechanisms and measurement methods. Mol Gen Metab 65:121–128

    Article  CAS  Google Scholar 

  • Bell JD, Brown JC, Sadler PJ et al (1987) High resolution proton nuclear magnetic resonance studies of human cerebrospinal fluid. Clin Sci (Lond). 72:563–570

    CAS  Google Scholar 

  • Bisaccia F, De Palma A, Palmieri F (1989) Identification and purification of the tricarboxylate carrier from rat liver mitochondria. Biochim Biophys Acta 977:171–176

    Article  PubMed  CAS  Google Scholar 

  • Bosakowski T, Levin AA (1986) Serum citrate as a peripheral indicator of fluoroacetate and fluorocitrate toxicity in rats and dogs. Toxicol Appl Pharmacol 85:428–436

    Article  PubMed  CAS  Google Scholar 

  • Bota DA, Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680

    Article  PubMed  CAS  Google Scholar 

  • Bouton C, Drapiers JC (2003) Iron regulatory proteins as NO signal transducers. Sci STKE 182:pe17

    Google Scholar 

  • Breusch FL (1937) Citric acid in tissue metabolism. Physiol Chem 250:262–280

    CAS  Google Scholar 

  • Bulteau AL, O’Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI (2004) Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305:242–245

    Article  PubMed  CAS  Google Scholar 

  • Cairo G, Recalcati S, Pietrangelo A, Minotti G (2002a) The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic Biol Med 32:1237–1243

    Article  CAS  Google Scholar 

  • Cairo G, Ronchi R, Recalcati S, Campanella A, Minotti G (2002b) Nitric oxide and peroxynitrite activate the iron regulatory protein-1 of J774A.1 macrophages by direct disassembly of the Fe–S cluster of cytoplasmic aconitase. Biochemistry 41:7435–7442

    Article  CAS  Google Scholar 

  • Campuzano V, Montermini L, Molto M et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  • Caudarella R, Vescini F, Buffa A, Stefoni S (2003) Citrate and mineral metabolism: kidney stones and bone disease. Front Biosci 8:s1084–1106

    Article  PubMed  Google Scholar 

  • Chen OS, Hemenway S, Kaplan J (2002) Genetic analysis of iron citrate toxicity in yeast: implications for mammalian iron homeostasis. Proc Natl Acad Sci USA 99:16922–16927

    Article  PubMed  CAS  Google Scholar 

  • Chen OS, Schalinske KL, Eisenstein RS (1997) Dietary iron intake modulates the activity of iron regulatory proteins and the abundance of ferritin and mitochondrial aconitase in rat liver. J Nutr 127:238–248

    PubMed  CAS  Google Scholar 

  • Chen XJ, Wang X, Kaufman BA, Butow RA (2005) Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 307:714–717

    Google Scholar 

  • Chua AC, Olynyk JK, Leedman PJ, Trinder D (2004) Non-transferrin-bound iron uptake by hepatocytes is increased in the Hfe knockout mouse model of hereditary hemochromatosis. Blood 104:1519–1525

    Article  PubMed  CAS  Google Scholar 

  • Clarke SL, Vasanthakumar A, Anderson SA et al (2006) Iron-responsive degradation of iron-regulatory protein 1 does not require the Fe–S cluster. EMBO J 25:544–553

    Article  PubMed  CAS  Google Scholar 

  • Condo I, Ventura N, Malisan F, Tomassini B, Testi R (2006) A pool of extramitochondrial frataxin that promotes cell survival. J Biol Chem 281:16750–16756

    Article  PubMed  CAS  Google Scholar 

  • Cooperman SS, Meyron-Holtz EG, Olivierre-Wilson H, Ghosh MC, McConnell JP, Rouault TA (2005) Microcytic anemia, erythropoietic protoporphyria and neurodegeneration in mice with targeted deletion of iron regulatory protein 2. Blood 106:1084–1091

    Article  PubMed  CAS  Google Scholar 

  • Cossee M, Puccio H, Gansmuller A et al (2000) Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 9:1219–1226

    Article  PubMed  CAS  Google Scholar 

  • Costello LC, Franklin RB (2002) Testosterone and prolactin regulation of metabolic genes and citrate metabolism of prostate epithelial cells. Horm Metab Res 34:417–424

    Article  PubMed  CAS  Google Scholar 

  • Costello LC, Liu Y, Franklin RB, Kennedy MC (1997) Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem 272:28875–28881

    Article  PubMed  CAS  Google Scholar 

  • Cox TC, Bawden MJ, Martin A, May BK (1991) Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA. EMBO J 10:1891–1902

    PubMed  CAS  Google Scholar 

  • Dakubo GD, Parr RL, Costello LC, Franklin RB, Thayer RE (2006) Altered metabolism and mitochondrial genome in prostate cancer. J Clin Pathol 59:10–16

    Article  PubMed  CAS  Google Scholar 

  • Das N, Levine RL, Orr WC, Sohal R (2001) Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem J 360:206–216

    Article  Google Scholar 

  • Delaval E, Perichon M, Friguet B (2004) Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart. Eur J Biochem 271:4559–4564

    Article  PubMed  CAS  Google Scholar 

  • Denton RM, Randle PJ (1966) Citrate and the regulation of adipose-tissue phosphofructokinase. Biochem J 100:420–423

    PubMed  CAS  Google Scholar 

  • Donovan A, Brownlie A, Zhou Y et al (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  PubMed  CAS  Google Scholar 

  • Dutkiewicz R, Marszalek J, Schilke B, Craig EA, Lill R, Muhlenhoff U (2006) The Hsp70 chaperone Ssq1p is dispensable for iron–sulfur cluster formation on the scaffold protein Isu1p. J Biol Chem 281:7801–7808

    Article  PubMed  CAS  Google Scholar 

  • Dzik WH, Kirkley SA (1988) Citrate toxicity during massive blood transfusion. Transfus Med Rev 2:76–94

    PubMed  CAS  Google Scholar 

  • Fei YJ, Liu JC, Inoue K et al (2004) Relevance of NAC-2, an Na+-coupled citrate transporter, to life span, body size and fat content in Caenorhabditis elegans. Biochem J 379:191–198

    Article  PubMed  CAS  Google Scholar 

  • Fillebeen C, Caltagirone A, Martelli A, Moulis JM, Pantopoulos K (2005) IRP1 Ser-711 is a phosphorylation site, critical for regulation of RNA-binding and aconitase activities. Biochem J 388:143–150

    Article  PubMed  CAS  Google Scholar 

  • Fosset C, Chauveau MJ, Guillon B, Canal F, Drapier JC, Bouton C (2006) RNA silencing of mitochondrial m-Nfs1 reduces Fe–S enzyme activity both in mitochondria and cytosol of mammalian cells. J. Biol. Chem. Epub ahead of print

  • Foury F, Talibi D (2001) Mitochondrial control of iron homeostasis. A genome wide analysis of gene expression in a yeast frataxin-deficient strain. J Biol Chem 276:7762–7768

    Article  PubMed  CAS  Google Scholar 

  • Galy B, Ferring D, Minana B et al (2005) Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood 106:2580–2589

    Article  PubMed  CAS  Google Scholar 

  • Ganesh S, Tsurutani N, Suzuki T et al (2003) The Lafora disease gene product laforin interacts with HIRIP5, a phylogenetically conserved protein containing a NifU-like domain. Hum Mol Genet 12:2359–2368

    Article  PubMed  CAS  Google Scholar 

  • Gangloff SP, Marguet D, Lauquin GJ (1990) Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol Cell Biol 10:3551–3561

    PubMed  CAS  Google Scholar 

  • Gardner PR (1997) Superoxide-driven aconitase FE–S center cycling. Biosci Rep 17:33–42

    Article  PubMed  CAS  Google Scholar 

  • Garland SA, Hoff K, Vickery LE, Culotta VC (1999) Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron–sulfur cluster assembly. J Mol Biol 294:897–907

    Article  PubMed  CAS  Google Scholar 

  • Gerber J, Muhlenhoff U, Lill R (2003) An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep 4:906–911

    Article  PubMed  CAS  Google Scholar 

  • Goncharov NV, Jenkins RO, Radilov AS (2006) Toxicology of fluoroacetate: a review, with possible directions for therapy research. J Appl Toxicol 26:148–161

    Article  PubMed  CAS  Google Scholar 

  • Gourley BL, Parker SB, Jones BJ, Zumbrennen KB, Leibold EA (2003) Cytosolic aconitase and ferritin are regulated by iron in Caenorhabditis elegans. J Biol Chem 278:3227–3234

    Article  PubMed  CAS  Google Scholar 

  • Gray NK, Pantopoulos K, Dandekar T, Ackrell BA, Hentze MW (1996) Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements. Proc Natl Acad Sci USA 93:4925–4930

    Article  PubMed  CAS  Google Scholar 

  • Grootveld M, Bell JD, Halliwell B, Aruoma OI, Bomford A, Sadler PJ (1989) Non-transferrin bound iron in plasma or serum from patients with idiopathic hemochromatosis. J Biol Chem 264:4417–4422

    PubMed  CAS  Google Scholar 

  • Gruer MJ, Artymiuk PJ, Guest JR (1997) The aconitase family: three structural variations on a common theme. Trends Biochem Sci 22:3–6

    Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  • Han D, Canali R, Garcia J, Aguilera R, Gallaher TK, Cadenas E (2005) Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Biochemistry 44:11986–11996

    Article  PubMed  CAS  Google Scholar 

  • Hansen JM, Go YM, Jones DP (2006) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 46:215–234

    Article  PubMed  CAS  Google Scholar 

  • Hanson ES, Rawlins ML, Leibold EA (2003) Oxygen and iron regulation of iron regulatory protein 2. J Biol Chem 278:40337–40342

    Article  PubMed  CAS  Google Scholar 

  • Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743

    Article  PubMed  CAS  Google Scholar 

  • Hodgkinson A (1963) The relation between citric acid and calcium metabolism with particular reference to primary hyper-parathyroidism and idiopathic hypercalciuria. Clin Sci (Lond) 24:167–178

    CAS  Google Scholar 

  • Huang TT, Raineri I, Eggerding F, Epstein CJ (2002) Transgenic and mutant mice for oxygen free radical studies. Methods Enzymol 349:191–213

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Zhuang L, Maddox DM, Smith SB, Ganapathy V (2002) Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J Biol Chem 277:39469–39476

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H, Kato M, Hori H et al (2005) Involvement of heme regulatory motif in heme-mediated ubiquitination and degradation of IRP2. Mol Cell 19:171–181

    Article  PubMed  CAS  Google Scholar 

  • Janero DR, Hreniuk D (1996) Suppression of TCA cycle activity in the cardiac muscle cell by hydroperoxide-induced oxidative stress. Am J Physiol 270:C1735–C1742

    PubMed  CAS  Google Scholar 

  • Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281

    Article  PubMed  CAS  Google Scholar 

  • Kaplan RS, Oliveira DL, Wilson GL (1990) Streptozotocin-induced alterations in the levels of functional mitochondrial anion transport proteins. Arch Biochem Biophys 280:181–191

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MC, Mende-Mueller L, Blondin GA, Beinert H (1992) Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci USA 89:11730–11734

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Klausner RD, Rouault TA (1995) Translational repressor activity is equivalent and is quantitatively predicted by in vitro RNA binding for two iron-responsive element-binding proteins, IRP1 and IRP2. J Biol Chem 270:4983–4986

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, LaVaute T, Iwai K, Klausner RD, Rouault TA (1996) Identification of a conserved and functional iron-responsive element in the 5’-untranslated region of mammalian mitochondrial aconitase. J Biol Chem 271:24226–24230

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Ponka P (2003) Role of nitric oxide in cellular iron metabolism. Biometals 16:125–135

    Article  PubMed  CAS  Google Scholar 

  • Knauf F, Mohebbi N, Teichert C et al (2006) The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates. Biochem J 397:25–29

    Article  PubMed  CAS  Google Scholar 

  • Knight SA, Sepuri NB, Pain D, Dancis A (1998) Mt-Hsp70 homolog, Ssc2p, required for maturation of yeast frataxin and mitochondrial iron homeostasis. J Biol Chem 273:18389–18393

    Article  PubMed  CAS  Google Scholar 

  • Koh HJ, Lee SM, Son BG et al (2004) Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem 279:39968–39974

    Article  PubMed  CAS  Google Scholar 

  • Kohler SA, Henderson BR, Kuhn LC (1995) Succinate dehydrogenase b mRNA of Drosophila melanogaster has a functional iron-responsive element in its 5’-untranslated region. J Biol Chem 270:30781–30786

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova SG, Russanov EM (1996) Aconitase activity in rat liver. Comp Biochem Physiol B Biochem Mol Biol 113:125–130

    Article  PubMed  CAS  Google Scholar 

  • Koutnikova H, Campuzano V, Foury F, Dolle P, Cazzalini O, Koenig M (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 16:345–351

    Article  PubMed  CAS  Google Scholar 

  • Land T, Rouault TA (1998) Targeting of a human iron–sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell 2:807–815

    Article  PubMed  CAS  Google Scholar 

  • Lange H, Kaut A, Kispal G, Lill R (2000) A mitochondrial ferredoxin is essential for biogenesis of cellular iron–sulfur proteins. Proc Natl Acad Sci USA 97:1050–1055

    Article  PubMed  CAS  Google Scholar 

  • LaNoue KF, Schoolwerth AC (1979) Metabolite transport in mitochondria. Annu Rev Biochem 48:871–922

    Article  PubMed  CAS  Google Scholar 

  • LaVaute T, Smith S, Cooperman S et al (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27:209–214

    Article  PubMed  CAS  Google Scholar 

  • Lawlis VB, Roche TE (1980) Effect of micromolar Ca2+ on NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex and possible role of Ca2+ in signal amplification. Mol Cell Biochem 32:147–152

    Article  PubMed  CAS  Google Scholar 

  • Lewis SM (2005) Introduction—the global problem of nutritional anemias. Hematology 10:224–226

    Article  Google Scholar 

  • Li Y, Huang TT, Carlson EJ et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381

    Article  PubMed  CAS  Google Scholar 

  • Li J, Kogan M, Knight SAB, Pain D, Dancis A (1999) Yeast mitochondrial protein, Nfs1p, coordinately regulates iron–sulfur cluster proteins, cellular iron uptake, and iron distribution. J Biol Chem 274:33025–33034

    Article  PubMed  CAS  Google Scholar 

  • Li K, Tong WH, Hughes RM, Rouault TA (2006) Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron–sulfur cluster assembly. J Biol Chem 281:12344–12351

    Article  PubMed  CAS  Google Scholar 

  • Liew YF, Shaw NS (2005) Mitochondrial cysteine desulfurase iron–sulfur cluster S and aconitase are post-transcriptionally regulated by dietary iron in skeletal muscle of rats. J Nutr 135:2151–2158

    PubMed  CAS  Google Scholar 

  • Lill R, Muhlenhoff U (2005) Iron–sulfur–protein biogenesis in eukaryotes. Trends Biochem Sci 30:133–141

    Article  PubMed  CAS  Google Scholar 

  • Lind MI, Missirlis F, Melefors O et al (2006) Of two cytosolic aconitases expressed in Drosophila, only one functions as an iron regulatory protein. J Biol Chem 281:18707–18714

    Article  PubMed  CAS  Google Scholar 

  • Lipinski P, Starzynski RR, Drapier JC et al (2005) Induction of iron regulatory protein 1 RNA-binding activity by nitric oxide is associated with a concomitant increase in the labile iron pool: implications for DNA damage. Biochem Biophys Res Commun 327:349–355

    Article  PubMed  CAS  Google Scholar 

  • Lorain S, Lecluse Y, Scamps C, Mattei MG, Lipinski M (2001) Identification of human and mouse HIRA-interacting protein-5 (HIRIP5), two mammalian representatives in a family of phylogenetically conserved proteins with a role in the biogenesis of Fe/S proteins. Biochim Biophys Acta 1517:376–383

    PubMed  CAS  Google Scholar 

  • Martin RB (1986) Citrate binding of Al3+ and Fe3+. J Inorg Biochem 28:181–187

    Article  PubMed  CAS  Google Scholar 

  • McGahan MC, Harned J, Mukunnemkeril M, Goralska M, Fleisher L, Ferrell JB (2005) Iron alters glutamate secretion by regulating cytosolic aconitase activity. Am J Physiol Cell Physiol 288:C1117–C1124

    Article  PubMed  CAS  Google Scholar 

  • McGarry JD, Mannaerts GP, Foster DW (1977) A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest 60:265–270

    Article  PubMed  CAS  Google Scholar 

  • McKie AT, Marciani P, Rolfs A et al (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309

    Article  PubMed  CAS  Google Scholar 

  • Melefors O Hentze MW (1993) Translational regulation by mRNA/protein interactions in eukaryotic cells: ferritin and beyond. Bioessays 15:85–90

    Article  Google Scholar 

  • Melnick JZ, Preisig PA, Moe OW, Srere P, Alpern RJ (1998) Renal cortical mitochondrial aconitase is regulated in hypo- and hypercitraturia. Kidney Int 54:160–165

    Article  PubMed  CAS  Google Scholar 

  • Meyron-Holtz EG, Ghosh MC, Iwai K et al (2004a) Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23:386–395

    Article  CAS  Google Scholar 

  • Meyron-Holtz EG, Ghosh MC, Rouault TA (2004b) Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306:2087–2090

    Article  CAS  Google Scholar 

  • Minard KI, McAlister-Henn L (2005) Sources of NADPH in yeast vary with carbon source. J Biol Chem 280:39890–39896

    Article  PubMed  CAS  Google Scholar 

  • Missirlis F, Hu J, Kirby K, Hilliker AJ, Rouault TA, Phillips JP (2003) Compartment-specific protection of iron–sulfur proteins by superoxide dismutase. J Biol Chem 278:47365–47369

    Article  PubMed  CAS  Google Scholar 

  • Molina-Navarro MM, Casas C, Piedrafita L, Belli G, Herrero E (2006) Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. FEBS Lett 580:2273–2280

    Article  PubMed  CAS  Google Scholar 

  • Muckenthaler M, Gunkel N, Frishman D, Cyrklaff A, Tomancak P, Hentze MW (1998) Iron-regulatory protein-1 (IRP-1) is highly conserved in two invertebrate species—characterization of IRP-1 homologues in Drosophila melanogaster and Caenorhabditis elegans. Eur J Biochem 254:230–237

    Article  PubMed  CAS  Google Scholar 

  • Mueller S, Pantopoulos K, Hubner CA, Stremmel W, Hentze MW (2001) IRP1 activation by extracellular oxidative stress in the perfused rat liver. J Biol Chem 276:23192–23196

    Article  PubMed  CAS  Google Scholar 

  • Mullner EW, Rothenberger S, Muller AM, Kuhn LC (1992) In vivo and in vitro modulation of the mRNA-binding activity of iron-regulatory factor. Tissue distribution and effects of cell proliferation, iron levels and redox state. Eur J Biochem 208:597–605

    Article  PubMed  CAS  Google Scholar 

  • Munday MR (2002) Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans 30:1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Napier I, Ponka P, Richardson DR (2005) Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood 105:1867–1874

    Article  PubMed  CAS  Google Scholar 

  • Napoli E, Taroni F, Cortopassi GA (2006) Frataxin, iron–sulfur clusters, heme, ROS, and aging. Antioxid Redox Signal 8:506–516

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo M (2003) Friedreich ataxia. Semin Pediatr Neurol 10:163–172

    Article  PubMed  Google Scholar 

  • Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    Article  PubMed  CAS  Google Scholar 

  • Pantopoulos K, Hentze MW (1995) Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J 14:2917–2924

    PubMed  CAS  Google Scholar 

  • Paradies G, Ruggiero FM (1990) Enhanced activity of the tricarboxylate carrier and modification of lipids in hepatic mitochondria from hyperthyroid rats. Arch Biochem Biophys 278:425–430

    Article  PubMed  CAS  Google Scholar 

  • Pierre JL, Gautier-Luneau I (2000) Iron and citric acid: a fuzzy chemistry of ubiquitous biological relevance. Biometals 13:91–96

    Article  PubMed  CAS  Google Scholar 

  • Pietrangelo A (2003) Iron-induced oxidant stress in alcoholic liver fibrogenesis. Alcohol 30:121–129

    Article  PubMed  CAS  Google Scholar 

  • Pilon M, Abdel-Ghany SE, Van Hoewyk D, Ye H, Pilon-Smits EA (2006) Biogenesis of iron–sulfur cluster proteins in plastids. Genet Eng (N Y). 27:101–117

    Article  CAS  Google Scholar 

  • Pondarre C, Antiochos BB, Campagna DR et al (2006) The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron–sulfur cluster biogenesis. Hum Mol Genet 15:953–964

    Article  PubMed  CAS  Google Scholar 

  • Puig S, Askeland E, Thiele DJ (2005) Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120:99–110

    Article  PubMed  CAS  Google Scholar 

  • Randle PJ (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 14:263–283

    Article  PubMed  CAS  Google Scholar 

  • Regev-Rudzki N, Karniely S, Ben-Haim NN, Pines O (2005) Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol Biol Cell 16:4163–4171

    Article  PubMed  CAS  Google Scholar 

  • Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137–2140

    Article  PubMed  CAS  Google Scholar 

  • Ross KL, Eisenstein RS (2002) Iron deficiency decreases mitochondrial aconitase abundance and citrate concentration without affecting tricarboxylic acid cycle capacity in rat liver. J Nutr 132(4):643–651

    PubMed  CAS  Google Scholar 

  • Rotig A, de Lonlay P, Chretien D et al (1997) Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    Article  PubMed  CAS  Google Scholar 

  • Rouault TA, Tong WH (2005) Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6:345–351

    Article  PubMed  CAS  Google Scholar 

  • Rustin P, Bourgeron T, Parfait B, Chretien D, Munnich A, Rotig A (1997) Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochim Biophys Acta 1361:185–197

    PubMed  CAS  Google Scholar 

  • Saas J, Ziegelbauer K, von Haeseler A, Fast B, Boshart M (2000) A developmentally regulated aconitase related to iron-regulatory protein-1 is localized in the cytoplasm and in the mitochondrion of Trypanosoma brucei. J Biol Chem 275:2745–2755

    Article  PubMed  CAS  Google Scholar 

  • Saha AK, Ruderman NB (2003) Malonyl-CoA and AMP-activated protein kinase: an expanding partnership. Mol Cell Biochem 253:65–70

    Article  PubMed  CAS  Google Scholar 

  • Schilke B, Voisine C, Beinert H, Craig E (1999) Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:10206–10211

    Article  PubMed  CAS  Google Scholar 

  • Seidler A, Jaschkowitz K, Wollenberg M (2001) Incorporation of iron–sulphur clusters in membrane-bound proteins. Biochem Soc Trans 29:418–421

    Article  PubMed  CAS  Google Scholar 

  • Seznec H, Simon D, Monassier L et al (2004) Idebenone delays the onset of cardiac functional alteration without correction of Fe–S enzymes deficit in a mouse model for Friedreich ataxia. Hum Mol Genet 13:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Siculella L, Sabetta S, di Summa R et al (2002) Starvation-induced posttranscriptional control of rat liver mitochondrial citrate carrier expression. Biochem Biophys Res Commun 299:418–423

    Article  PubMed  CAS  Google Scholar 

  • Silberg JJ, Tapley TL, Hoff KG, Vickery LE (2004) Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron–sulfur cluster assembly protein IscU. J Biol Chem 279:53924–53931

    Article  PubMed  CAS  Google Scholar 

  • Singh KK, Desouki MM, Franklin RB, Costello LC (2006) Mitochondrial aconitase and citrate metabolism in malignant and non-malignant human prostate tissues. Mol Cancer 5:14

    Article  PubMed  CAS  Google Scholar 

  • Sluse FE, Meijer AJ, Tager JM (1971) Anion translocators in rat-heart mitochondria. FEBS Lett 18:149–153

    Article  PubMed  CAS  Google Scholar 

  • Smith AD, Agar JN, Johnson KA et al (2001) Sulfur transfer from IscS to IscU: the first step in iron–sulfur cluster biosynthesis. J Am Chem Soc 123:11103–11104

    Article  PubMed  CAS  Google Scholar 

  • Smith SR, Cooperman S, Lavaute T et al (2004) Severity of neurodegeneration correlates with compromise of iron metabolism in mice with iron regulatory protein deficiencies. Ann N Y Acad Sci 1012:65–83

    Article  PubMed  CAS  Google Scholar 

  • Smith SR, Ghosh MC, Ollivierre-Wilson H, Tong W-H, Rouault TA (2006) Complete loss of iron regulatory proteins 1 and 2 prevents viability of murine zygotes beyond the blastocyst stage of embryonic development. Blood Cells Mol Dis 36:283–287

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Krane J, Unsgard G, Petersen SB, Schousboe A (1991) First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neurosci Lett 128:235–239

    Article  PubMed  CAS  Google Scholar 

  • Starzynski RR, Lipinski P, Drapier J-C et al (2005) Down-regulation of iron regulatory protein 1 activities and expression in superoxide dismutase 1 knock-out mice is not associated with alterations in iron metabolism. J Biol Chem 280:4207–4212

    Article  PubMed  CAS  Google Scholar 

  • Tong WH, Jameson GN, Huynh BH, Rouault TA (2003) Subcellular compartmentalization of human Nfu, an iron–sulfur cluster scaffold protein, and its ability to assemble a [4Fe-4S] cluster. Proc Natl Acad Sci USA 100:9762–9767

    Article  PubMed  CAS  Google Scholar 

  • Tong W-H, Rouault T (2000) Distinct iron–sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J 19:5692–5700

    Article  PubMed  CAS  Google Scholar 

  • Tong WH, Rouault TA (2006) Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron–sulfur cluster biogenesis and iron homeostasis. Cell Metab 3:199–210

    Article  PubMed  CAS  Google Scholar 

  • Tury A, Mairet-Coello G, Lisowsky T, Griffond B, Fellmann D (2005) Expression of the sulfhydryl oxidase ALR (Augmenter of Liver Regeneration) in adult rat brain. Brain Res 1048:87–97

    Article  PubMed  CAS  Google Scholar 

  • Umbreit J (2005) Iron deficiency: a concise review. Am J Hematol 78:225–231

    Article  PubMed  CAS  Google Scholar 

  • Urbina HD, Silberg JJ, Hoff KG, Vickery LE 2001 Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. J Biol Chem 276:44521–44526

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Shimada A, Fujita T (2006) Functional characterization of Na+ -coupled citrate transporter NaC2/NaCT expressed in primary cultures of neurons from mouse cerebral cortex. Brain Res 1081:92–100

    Article  PubMed  CAS  Google Scholar 

  • Wallace MA, Liou LL, Martins J et al (2004) Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J Biol Chem 279:32055–32062

    Article  PubMed  CAS  Google Scholar 

  • Weinstein R (2001) Hypocalcemic toxicity and atypical reactions in therapeutic plasma exchange. J Clin Apher 16:210–211

    Article  PubMed  CAS  Google Scholar 

  • Westergaard N, Banke T, Wahl P, Sonnewald U, Schousboe A (1995) Citrate modulates the regulation by Zn2+ of N-methyl-d-aspartate receptor-mediated channel current and neurotransmitter release. Proc Natl Acad Sci USA 92:3367–3370

    Article  PubMed  CAS  Google Scholar 

  • Williamson JR, Cooper RH (1980) Regulation of the citric acid cycle in mammalian systems. FEBS Lett 117(Suppl):K73–K85

    Article  PubMed  Google Scholar 

  • Wingert RA, Galloway JL, Barut B et al (2005) Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature 436:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Wolfgang MJ, Lane MD (2006) Control of energy homeostasis: role of enzymes and intermediates of fatty acid metabolism in the central nervous system. Annu Rev Nutr 26:23–44 (Epub ahead of print)

    Google Scholar 

  • Yan L-J, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci USA 94:11168–11172

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Cobine PA, Molik S et al (2006) The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2. EMBO J 25:1775–1783

    Article  PubMed  CAS  Google Scholar 

  • Yarian CS, Toroser D, Sohal RS (2006) Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mech Aging Dev 127:79–84

    Article  PubMed  CAS  Google Scholar 

  • Yoon T, Cowan JA (2003) Iron–sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe–4S] clusters in ISU-type proteins. J Am Chem Soc 125:6078–6084

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Cash VL, Flint DH, Dean DR (1998) Assembly of iron–sulfur clusters: identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90:2754–2758

    Article  PubMed  CAS  Google Scholar 

  • Zoller H, Decristoforo C, Weiss G (2002) Erythroid 5-aminolevulinate synthase, ferrochelatase and DMT1 expression in erythroid progenitors: differential pathways for erythropoietin and iron-dependent regulation. Br J Haematol 118:619–626

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey A. Rouault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, WH., Rouault, T.A. Metabolic regulation of citrate and iron by aconitases: role of iron–sulfur cluster biogenesis. Biometals 20, 549–564 (2007). https://doi.org/10.1007/s10534-006-9047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9047-6

Keywords

Navigation