Skip to main content

Advertisement

Log in

Influence of epipsammic biofilm on the biogeochemistry of arsenic in freshwater environments

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The influence of epipsammic biofilm developed on riverbed sediment on the sorption, uptake, mobility and transformation of AsV was studied. Native biofilm was incubated on sediment samples at microcosm level. Once the biofilm had developed, 500 µg L−1 AsV was spiked in two systems designated BAS and BASP, without P and with equimolar As:P concentration ratio, respectively, and compared with identical control (sterilized) systems (CAS and CASP). The evolution and speciation of arsenic (As) concentrations in the overlying water were followed during two additional weeks. The biofilm enhanced removal of AsV from the water up to 91 % of its initial concentration, while only ~70 % removal was attained in CAS. Presence of equimolar P concentration enhanced the amount of As removal up to 97 % in BASP, but had no effect in CASP. In the systems with biofilm, As was mostly (~97 %) in AsV form, whilst AsIII only accounted for ~1 % of total aqueous As. The organic species, monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV), represented 0.6 and 0.7 % of total As, respectively. In contrast, in the systems devoid of biofilm, AsIII accounted for up to 39 % of aqueous As, whereas methylated aqueous species were negligible. The distribution of As in the biofilm showed that ~71 % of the retained As was extracellular, most (>99.5 %) in the form of AsV. Volatile As forms were only detected in the systems incorporating biofilm. It is concluded that biofilm covering sediments increases As retention, inhibits reduction of AsV to AsIII and methylates inorganic As, thus playing a key role in the biogeochemistry of As in river environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association. 21st ed. American Water Works Association, Water Environment Federation, Alexandria

  • Barral-Fraga L, Morin S, Rovira MDM, Urrea G, Magellan K, Guasch H (2016) Short-term arsenic exposure reduces diatom cell size in biofilm communities. Environ Sci Pollut Res. doi:10.1007/s11356-015-4894-8

    Google Scholar 

  • Beck AJ, Janssen F, de Beer D (2011) The influence of phototrophic benthic biofilms on Cd, Cu, Ni, and Pb transport in permeable sediments. Biogeochemistry 102(1–3):167–181

    Article  Google Scholar 

  • Bennett WW, Teasdale PR, Panther JG, Welsh DT, Jolley DF (2010) New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent. Anal Chem 82(17):7401–7407

    Article  Google Scholar 

  • Blanck H, Wangberg S-A (1988) Validity of an ecotoxicological test system: short-term and long-term effects of arsenate on marine periphyton communities in laboratory systems. Can J Fish Aquat Sci 45(10):1807–1815

    Article  Google Scholar 

  • Blanck H, Wangberg S-A (1991) Pattern of cotolerance in marine periphyton communities established under arsenate stress. Aquat Toxicol 21(1–2):1–14

    Article  Google Scholar 

  • BOE (2015) Real Decreto 817/2015 del 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental. https://www.boe.es/boe/dias/2015/09/12/pdfs/BOE-A-2015-9806.pdf

  • Buschmann J, Kappeler A, Lindauer U, Kistler D, Berg M, Sigg L (2006) Arsenate and arsenite binding to dissolve humic acids: influence of pH, type of humic acid, and aluminium. Environ Sci Technol 40:6015–6020

    Article  Google Scholar 

  • Cherry JA, Shaikh AU, Tallman DE, Nicholson RV (1979) Arsenic species as an indicator of redox conditions in groundwater. J Hydrol 43:373–392

    Article  Google Scholar 

  • Costas M, Prego R, Filgueiras AV, Bendicho C (2011) Land–ocean contributions of arsenic through a river–estuary–ria system (SW Europe) under the influence of arsenopyrite deposits in the fluvial basin. Sci Total Environ 412–413:304–314

    Article  Google Scholar 

  • Costerton JW (2007) The biofilm primer. Springer, Berlin

    Book  Google Scholar 

  • Cullen WR, Harrison LG, Li H, Hewitt G (1994a) Bioaccumulation and excretion of arsenic compounds by a marine unicellular alga, Polyphysa peniculus. Appl Organomet Chem 8(4):313–324

    Article  Google Scholar 

  • Cullen WR, Herring FG, Nelson JC (1994b) Employing permeability coefficients to understand the biomobility and bioaccumulation of compounds sensitive to the environment. Bull Environ Contam Toxicol 52:171–175

    Article  Google Scholar 

  • Cullen WR, Li H, Hewitt G, Reimer KJ, Zalunardo N (1994c) Identification of extracellular arsenical metabolites in the growth-medium of the microorganisms Apiotrichum humicola and Scopulariopsis brevicaulis. Appl Organomet Chem 8(4):303–311

    Article  Google Scholar 

  • Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367:546–548

    Article  Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • DGT® technical documentation. DGT-for measurements in waters, soils and sediments. http://www.dgtresearch.com/dgtresearch/dgtresearch.pdf

  • Devesa-Rey R, Paradelo R, Díaz-Fierros F, Barral MT (2008) Fractionation and bioavailability of arsenic in the bed sediments of the Anllóns river (NW Spain). Water Air Soil Pollut 195(1–4):189–199

    Article  Google Scholar 

  • Devesa-Rey R, Díaz-Fierros F, Barral MT (2011) Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns river, NW Spain). Environ Monit Assess 179:371–388

    Article  Google Scholar 

  • Dong D, Nelson YM, Lion LW, Shuler ML, Ghiorse WC (2000) Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: new evidence for the importance of Mn and Fe oxides. Water Res 34:427–436

    Article  Google Scholar 

  • Dong D, Liu L, Hua X, Lu Y (2007) Comparison of lead, cadmium, copper and cobalt adsorption onto metal oxides and organic materials in natural surface coating. Microchem J 85:270–275

    Article  Google Scholar 

  • Drahota P, Skaloud P, Nováková B, Mihaljevic M (2014) Comparison of Pb, Zn, Cd, As, Cr, Mo and Sb adsorption onto natural surface coatings in a stream draining natural As geochemical anomaly. Bull Environ Contam Toxicol 93:311–315

    Article  Google Scholar 

  • Drewniak L, Styczek A, Majder-Lopatka M, Sklodowska A (2008) Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ Pollut 156(3):1069–1074

    Article  Google Scholar 

  • Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641

    Article  Google Scholar 

  • FAO (1985) Water quality guidelines for maximum crop production. In: Wastewater quality guidelines for agricultural use. Food and Agriculture Organization of the United Nations. http://www.fao.org/docrep/T0551E/t0551e04.htm#2.4. Accessed 10 Jan 2016

  • Fauser P, Sanderson H, Hedegaard RV, Sloth JJ, Larsen MM, Krongaard T, Bossi R, Larsen JB (2013) Occurrence and sorption properties of arsenicals in marine sediments. Environ Monit Assess 185(6):4679–4691

    Article  Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Štipek K, Fischerova Z, Schweiger P, Köllensperger G, Ma LQ, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37(21):5008–5014

    Article  Google Scholar 

  • Friese K, Mages M, Wendt-Potthoff K, Neu TR (1997) Determination of heavy metals in biofilms from the river Elbe by total-reflection X-ray fluorescence spectroscopy. Spectrochim Acta, Part B 52:1019–1025

    Article  Google Scholar 

  • Gleyzes C, Tellier S, Astruc M (2002) Chapter 4: Sequential extraction procedures for the characterisation of the fractionation of elements in industrially-contaminated soils. In: Quevauviller Ph (ed) Methodologies for soil and sediment fractionation studies. Royal Society of Chemistry, Cambridge, pp 66–104

    Chapter  Google Scholar 

  • Guitián F, Carballas T (eds) (1976) Técnicas de Análisis de Suelos, Pico Sacro, Santiago de Compostela

    Google Scholar 

  • Haack EA, Warren LA (2003) Biofilm hydrous manganese oxyhydroxides and metal dynamics in acid rock drainage. Environ Sci Technol 37:4138–4147

    Article  Google Scholar 

  • Hasegawa H, Rahman MA, Matsuda T, Kitahara T, Maki T, Ueda K (2009) Effect of eutrophication on the distribution of arsenic species in eutrophic and mesotrophic lakes. Sci Total Environ 407(4):1418–1425

    Article  Google Scholar 

  • Headley JV, Gandrass J, Kuballa J, Peru KM, Gong Y (1998) Rates of sorption and partitioning of contaminants in river biofilms. Environ Sci Technol 32:3968–3973

    Article  Google Scholar 

  • Hellweger FL, Lall U (2004) Modeling the effect of algal dynamics on arsenic speciation in Lake Biwa. Environ Sci Technol 38:6716–6723

    Article  Google Scholar 

  • Hongshao Z, Stanforth R (2001) Competitive adsorption of phosphate and arsenate on goethite. Environ Sci Technol 35:4753–4757

    Article  Google Scholar 

  • Huang JH (2014) Impact of microorganisms on arsenic biogeochemistry: a review. Water Air Soil Pollut 225:1848

    Article  Google Scholar 

  • Huang JH, Matzner E (2007) Biogeochemistry of organic and inorganic arsenic species in a forested catchment in Germany. Environ Sci Technol 41(5):1564–1569

    Article  Google Scholar 

  • Jiang W, Zhang S, Shan X-Q, Feng M, Zhu Y-G, Mc Laren RG (2005) Adsorption of arsenate on soils. Part 2: modeling the relationship between adsorption capacity and soil physicochemical properties using 16 Chinese soils. Environ Pollut 138:285–289

    Article  Google Scholar 

  • Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87:264–271

    Article  Google Scholar 

  • Klitzke S, Lang F (2009) Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil—effects of pH increase and counterion valency. J Environ Qual 38:933–939

    Article  Google Scholar 

  • Kuehnelt D, Goessler W (2003) Organoarsenic compounds in the terrestrial environment. In: Craig PJ (ed) Organometallic compounds in the environment. Wiley, Heidelberg, pp 223–275

    Chapter  Google Scholar 

  • Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci Rev 75(1–4):29–57

    Article  Google Scholar 

  • Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem 10:2630–2639

    Article  Google Scholar 

  • Long E, MacDonald D, Smith S, Calder F (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • Luo J, Zhang H, Santner J, Davison W (2010) Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V), and antimony(V). Anal Chem 82(8903):8909

    Google Scholar 

  • Manning BA, Goldberg S (1996) Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci Soc Am J 60:121–131

    Article  Google Scholar 

  • Manning BA, Goldberg S (1997) Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environ Sci Technol 31:2005–2011

    Article  Google Scholar 

  • Martiñá Prieto D, Devesa-Rey R, Paradelo R, Díaz-Fierros F, Barral MT (2016) Monitoring benthic microflora in river bed sediments: a case study in the Anllóns river (Spain). J Soil Sediments 16:1825–1839

    Article  Google Scholar 

  • Mestrot A, Uroic K, Plantevin T, Islam MR, Krupp E, Feldmann J, Meharg AA (2009) Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil. Environ Sci Technol l43:8270–8275

    Article  Google Scholar 

  • Miyashita S, Shimoya M, Kamidate Y, Kuroiwa T, Shikino O, Fujiwara S, Francesconi KA, Kaise T (2009) Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS. Chemosphere 75:1065–1073

    Article  Google Scholar 

  • Moreno-Jiménez E, Six L, Williams PN, Smolders E (2013) Inorganic species of arsenic in soil solution determined by microcartridges and ferrihydrite-based diffusive gradient in thin films (DGT). Talanta 140:83–89

    Article  Google Scholar 

  • Morris JM, Nimick DA, Farag AM, Meyer JS (2005) Does biofilm contribute to diel cycling of Zn in High Ore Creek, Montana? Biogeochemistry 76:233–259

    Article  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  Google Scholar 

  • Nelson YM, Lion LW, Shuler ML, Ghiorse WC (1996) Modelling oligotrophic biofilm formation and lead adsorption to biofilm components. Environ Sci Technol 30:2027–2035

    Article  Google Scholar 

  • Nelson YM, Lion LW, Shuler ML, Ghiorse WC (1999) Lead binding to metal oxide and organic phases of natural aquatic biofilms. Limnol Oceanogr 44:1715–1729

    Article  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13(2):45–49

    Article  Google Scholar 

  • Oscarson DW, Huang PM, Defosse C, Herbillon A (1981) Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments. Nature 291:50–51

    Article  Google Scholar 

  • Österlund H, Chlot S, Faarinen M, Widerlund A, Rodushkin I, Ingri J, Baxter DC (2010) Simultaneous measurements of As, Mo, Sb, V and W using a ferrihydrite diffusive gradients in thin films (DGT) device. Anal Chim Acta 682(1–2):59–65

    Article  Google Scholar 

  • Österlund H, Faarinen M, Ingri J, Baxter DC (2012) Contribution of organic arsenic species to total arsenic measurements using ferrihydrite-backed diffusive gradients in thin films (DGT). Environ Chem 9(1):55–62

    Article  Google Scholar 

  • Páez-Espino D, Tamames J, De Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130

    Article  Google Scholar 

  • Panther JG, Stillwell KP, Powell KJ, Downard AJ (2008) Perfluorosulfonated ionomer-modified diffusive gradients in thin films: tool for inorganic arsenic speciation analysis. Anal Chem 80(24):9806–9811

    Article  Google Scholar 

  • Persaud D, Jaagumagui R, Hayton A (1993) Guidelines for the protection and management on aquatic sediment quality in Ontario. Ontario Ministry of the Environment and Energy, Ontario

    Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV (2000) Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207

    Article  Google Scholar 

  • Prieto DM, Devesa-Rey R, Rubinos DA, Díaz-Fierros F, Barral MT (2013) Arsenate retention by epipsammic biofilms developed on streambed sediments. Influence of phosphate. BioMed Research International. http://dx.doi.org/10.1155/2013/591634

  • Prieto DM, Devesa-Rey R, Rubinos DA, Díaz-Fierros F, Barral MT (2016) Biofilm formation on river sediments under different light intensities and nutrient inputs: a flume mesocosm study. Environ Eng Sci 33(4):250–260

    Article  Google Scholar 

  • Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36:2889–2896

    Article  Google Scholar 

  • Rodríguez Castro MC, Urrea G, Guasch H (2015) Influence of the interaction between phosphate and arsenate on periphyton’s growth and its nutrient uptake capacity. Sci Total Environ 503–504:122–132

    Article  Google Scholar 

  • Rubinos D, Iglesias L, Devesa-Rey R, Díaz-Fierros F, Barral MT (2010) Arsenic release from river sediments in a gold-mining area (Anllóns river basin, Spain): effect of time, pH and phosphorous concentration. Eur J Mineral 22(5):665–678

    Article  Google Scholar 

  • Rubinos D, Iglesias L, Díaz-Fierros F, Barral MT (2011) Interacting effect of pH, phosphate and time on the release of arsenic from polluted river sediments (Anllóns river, Spain). Aqua Geochem 17:281–306

    Article  Google Scholar 

  • Rubinos D, Calvo V, Iglesias L, Barral MT (2014) Acute toxicity of arsenic to Aliivibrio fischeri (Microtox® bioassay) as influenced by potential competitive–protective agents. DOI, Environ Sci Pollut Res. doi:10.1007/s11356-014-2715-0

    Google Scholar 

  • Sabater S, Guasch H, Ricart M, Romaní A, Vidal G, Klünder C, Schmitt-Jansen M (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387(4):1425–1434

    Article  Google Scholar 

  • Serra A, Corcoll N, Guasch H (2009) Copper accumulation and toxicity in fluvial periphyton: the influence of exposure history. Chemosphere 74:633–641

    Article  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations and remediation. Environ Int 35:743–759

    Article  Google Scholar 

  • S.I. No. 272/2009-European Communities Environmental Objectives (surface waters) Regulations (2009)

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  Google Scholar 

  • Stockdale A, Davison W, Hao Zhang (2008) High-resolution two-dimensional quantitative analysis of phosphorus, vanadium and arsenic, and qualitative analysis of sulfide, in a freshwater sediment. Environ Chem 5(2):143–149

    Article  Google Scholar 

  • Stockdale A, Davison W, Hao Zhang (2010) 2D simultaneous measurement of the oxyanions of P, V, As, Mo, Sb, W and U. J Environ Monit 12:981–984

    Article  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, ReedW Wang C, CullenWR Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    Article  Google Scholar 

  • Thanabalasingam P, Pickering WF (1986) Arsenic sorption by humic acids. Environ Pollut 12:233–246

    Article  Google Scholar 

  • Tuulaikhuu B-A, Romaní AM, Guasch H (2015) Arsenic toxicity effects on microbial communities and nutrient cycling in indoor experimental channels mimicking a fluvial system. Aquat Toxicol 166:72–82

    Article  Google Scholar 

  • USEPA (2014) National recommended water quality criteria: aquatic life criteria. Environmental Protection Agency. http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/index.cfm

  • van Hullebusch ED, Zandvoort MH, Lens PNL (2003) Review metal immobilisation by biofilms: mechanisms and analytical tools. Environ Sci Bio/Technol 2:9–33

    Article  Google Scholar 

  • Wang N, Li Y, Deng X, Miao A, Ji R, Yang L (2013) Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res 47:2497–2506

    Article  Google Scholar 

  • Wang P, Sun G, Jia Y, Meharg AA, Zhu Y (2014) A review on completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment. J Environ Sci 26:371–381

    Article  Google Scholar 

  • Wangberg SA, Heyman U, Blanck H (1991) Long-term and short-term arsenate toxicity to fresh-water phytoplankton and periphyton in limnocorrals. Can J Fish Aquat Sci 48(2):173–182

    Article  Google Scholar 

  • Warren LA, Haack EA (2001) Biogeochemical controls on metal behaviour in freshwater environments. Earth Sci Rev 54:261–320

    Article  Google Scholar 

  • WHO (1993) Guidelines for drinking water quality, 2nd edn. Switzerland, Geneva

    Google Scholar 

  • Yang SI, Lawrence JR, Swerhone GDW, Pickering IJ (2011) Biotransformation of selenium and arsenic in multi-species biofilm. Environ Chem 8(6):543–551

    Article  Google Scholar 

  • Yin X, Chen J, Qin J, Sun G, Rosen BP, Zhu Y (2011a) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638

    Article  Google Scholar 

  • Yin X, Zhang Y, Yang J, Zhu Y (2011b) Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila. Environ Pollut 159:837–840

    Article  Google Scholar 

  • Zhang H, Davison W (1995) Performance characteristics of the technique of diffusion gradients in thin-films (DGT) for the measurement of trace metals in aqueous solution. Anal Chem 67:3391–3400

    Article  Google Scholar 

  • Zhang H, Davison W, Miller S, Tych W (1995) In situ high resolution measurements of fluxes of Ni, Cu, Fe and Mn and concentrations of Zn and Cd in porewaters by DGT. Geochim Cosmochim Acta 59:4181–4192

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Spanish Ministry of Economy and Competitiveness (MINECO-FEDER) for financial support (project ref. CGL2010-22059 and CGL2013-46003P). D.M.P. wishes to acknowledge the support of the Spanish Ministry of Economy and Competitiveness for his personal funding (FPI Fellowship, ref. BES-2011-044514). D.A.R. is also grateful for his personal funding from the Xunta de Galicia (Plan Galego de Investigación, Innovación e Crecemento—I2C, Consellería de Educación e Ordenación Universitaria) and from the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. M. Prieto or D. A. Rubinos.

Additional information

Responsible Editor: Breck Bowden

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, D.M., Rubinos, D.A., Piñeiro, V. et al. Influence of epipsammic biofilm on the biogeochemistry of arsenic in freshwater environments. Biogeochemistry 129, 291–306 (2016). https://doi.org/10.1007/s10533-016-0232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0232-6

Keywords

Navigation